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Abstract

Stability Characteristics of Counter-Rotating Vortex Pairs
in the Wakes of Triangular-Flapped Airfoils
by
Jason Marc Ortega
Doctor of Philosophy in Engineering-Mechanical Engineering
University of California at Berkeley

Professor Omer Savag, Chair

A rapidly growing instability is observed to develop between unequal strength, counter-
rotating vortex pairs in the wakes of airfoils with outboard triangular flaps. To investigate
the physical mechanisms for this instability, a linear stability analysis is performed on a
single vortex pair. This analytical model reveals that the instability is driven by the strain
rate field from one vortex acting on the perturbations of its neighboring vortex. Another
linear stability analysis is conducted to include the effects of the other counter-rotating vor-
tex pair. The qualitative features of the instability, such as its wavelength and non-linear
evolution, are examined by flow visualization measurements that are made in a towing tank
facility at a chord-based Reynolds number of O(10°). From these observations, a sinuous
instability is seen to develop on the weaker flap vortices and have a wavelength of order
one wingspan. The instability wavelengths that are observed in the flow visualization data
compare favorably with those predicted by the two- and four- vortex linear stability analy-
ses, demonstrating that the analytical models capture the essential physics of the instability
growth. Quantitative measurements of the vortex wakes are made with a PIV technique,
allowing the vortex structure, trajectories, kinetic energy, and distribution to be assessed
up to several hundred wingspans downstream of the airfoils. Additionally, the circulation-
based Reynolds number is seen to be of O(10°). The PIV data indicate that the wake’s
two-dimensional kinetic energy decreases substantially as the instability transforms the two-

dimensional nature of the wake into a three-dimensional one. Finally, the wake alleviation



properties of this instability are measured by computing the maximum rolling moment and
downwash that a following wing might experience if it were placed in the wakes of these
airfoils. These calculations show that by 75 wingspans, the wakes of the triangular-flapped
airfoils have rolling moments and downwash that are always less than those of a conven-
tional rectangular airfoil. This rapid reduction in the rolling moment and downwash leads
to the conclusion that this instability between unequal strength, counter-rotating vortex

pairs has the potential to solve the wake hazard problem.

Omer Savas Date
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Chapter 1

Introduction

The trailing vortex system in the wake of an airplane is a result of the lift generated
by its finite-span airfoil. As the wing passes through the atmosphere, the high pressure fluid
that exists beneath it travels outwardly and the low pressure fluid above it, inwardly. Com-
bined with the free stream velocity, the resulting flow produces a sheet of swirling motion
along the airfoil such as that in Figure 1.1. Within a few chord lengths downstream of the
airfoil, the sheet rolls up into two distinct vortices, which rotate in opposite directions. At
larger downstream distances, the trailing vortices continue to persist and, under the proper
atmospheric conditions, can be seen behind an airplane when they entrain water vapor from
the jet-engine exhaust (Figure 1.2). Typically, the trailing vortices decay by means of the
Crow instability (Figure 1.3) [17]. This instability leads to sinusoidal perturbations along
the lengths of the vortices and eventually causes them to link into closed vortex loops. The
Crow instability requires several hundred wingspans to occur, allowing the vortices to exist
several miles downstream of the airplane. It is this long life of the vortices that causes the
wake hazard problem.

An airplane flying in the vortex wake of another airplane can experience motions
anywhere from sudden upwash to downwash to rolling, depending on the airplane’s orien-
tation with respect to the wake. Near the ground, this can be especially dangerous, as the

pilot has less time to recover from rapid changes in the airplane’s attitude. This hazard is
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Figure 1.1: Vortex system in the wake of a finite aspect ratio wing [33]

further intensified at airports, where airplanes are continually landing and taking off in the
vortex wakes of other airplanes. To deal with this wake vortex hazard, the Federal Aviation
Administration (FAA) regulates the separation distances between successive airline flights,
which presumably allows the following aircraft to avoid the previously generated vortices.
To account for the fact that the vortices behave differently under various atmospheric con-
ditions, these separation distances are often overly conservative, resulting in unnecessary
flight delays and the associated costs to the public and airline companies. Consequently,
there is an increasing need to develop a means of tracking or eliminating the trailing vor-
tices. Unfortunately, the technology to precisely track or predict the location of the vortices
under all weather conditions is currently unavailable. As a result, a considerable amount of
research has been directed towards eliminating the trailing vortex hazard by modifying the
airplane that generates them.

In the 1970’s, NASA designed and tested a host of concepts and devices that were
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Figure 1.2: Trailing vortices visible in the wake of a 747 airliner.

Figure 1.3: Crow instability in the wake of an aircraft. The numbers beneath each image
indicate the number of seconds since the aircraft flew over [17].
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intended to alleviate the wake hazard. Some of these designs, such as splines or wing-tip
mounted engines [20, 21, 36, 37], were intended to force large amounts of turbulence into
the vortices. The idea was that the additional turbulence would cause the vortices to break
apart more quickly. Other concepts functioned by modifying the lift distribution of the
wing in order to achieve a safer wake. Rossow [44] describes two such lift distributions: a
saw-tooth wing loading and a tailored wing loading. Using the Betz roll-up theory, which
relates the span loading to the rolled-up vortex structure, Rossow discovered that a saw-
tooth wing loading leads to a vortex sheet that theoretically translates downward as a single
unit with no concentrated vortices. Additionally, a tailored wing loading was shown to yield
two tip vortices that rotate as rigid bodies. Other wake alleviation designs operated in an
active manner and included such concepts as small, pulsatile jets located at the wingtips
and spoilers or flaps that were periodically deployed in flight [21]. These devices were
intended to pre-maturely excite the Crow instability and rapidly cause the linking of the
oppositely-signed tip vortices. A final group of concepts are those that operated in a passive
manner. Some of these ideas included wing-tip fences, control vortices, and wing-tip turning
vanes [21, 36]. In spite of the large number of designs that were tested, none of them were
implemented as a solution to wake hazard problem. Simply put, some of the concepts
did not effectively reduce the wake hazard and for those that did, the price in airplane
performance was too great to make them practical for every day use.

More recently, a few concepts have emerged as potential means to control the vortex
wake. In 2000, Boeing went public with a design [5] that actively eliminates the wake hazard.
By periodically oscillating the outer ailerons and spoilers, an instability is driven that
destroys the inner and outer vortices on each wing. A similar idea was also demonstrated
with numerical simulations in [43]. Another concept for reducing the intensity of wake
vortices is based upon an application for military submarines. The research in [39, 40, 41, 42]
over the past few years has been directed towards an idea called “vortex leveraging.” This
concept works by placing shape memory alloy (SMA) control surfaces on the submarine’s
sailplanes and periodically oscillating them. The control vortices generated by these surfaces

interact with the sailplane vortices, causing an instability to rapidly occur. Though several
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numerical simulations have been presented, experimental verification does not appear to be
available in the open literature.

The third concept is the topic of the present work. In reviewing the wake alleviation
devices that had been tested in the past, the author realized that one means of disrupting
the coherence of the vortex wake is to render it three-dimensional. As long as the vortices
remain parallel, they behave in a nearly two-dimensional fashion, which takes a relatively
long time to decay. Perhaps, a robust means to bring about rapid changes in the wake would
be to utilize control vortices in a passive fashion. The advantage of the control vortices is
that they can be generated to contain a comparable amount of energy to that of the tip
vortices. Consequently, the control vortices can effectively alter the behavior of the tip
vortices. This was observed in previous towing tank studies [7, 9], which investigated the
merger characteristics of co-rotating vortex pairs in the wakes of airfoils. By introducing
flap vortices near the tip vortices, the trajectories of the tip vortices were altered so that
they no longer descended in a near vertical manner, but orbited about the flap vortices in
a helical fashion until the vortices merged. It was observed in these experiments that the
closer the flap and tip vortices were to one another, the more quickly they merged. Since
the merged vortices were just as coherent as the original flap and tip vortices, there was not
much reduction in the wake hazard. In considering these results, the question then arose as
to what would happen if oppositely-signed control vortices were utilized instead? Perhaps,
by placing these control vortices close to the tip vortices, an instability between them would
occur, transforming the two-dimensional nature of the wake into a three-dimensional one.
Furthermore, the passive nature of such a concept would make it that much simpler to design
and straightforward to test. Bilanin et al. [3] had already studied the wake of a similar type
of airfoil. However, the short wind tunnel test section used in their investigation prevented
their measurements from being made in the far wake of the airfoil.

During May 1999, several 15 cm spans airfoils were constructed to investigate the
above idea. A set of preliminary experiments were conducted in a small-scale towing tank
(1.8m x 0.6 m x 0.6 m) in the U.C. Berkeley Fluid Mechanics Laboratory. Flow visual-

ization of the vortex wakes was achieved by illuminating a cross-section of the seeded tank
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with a light sheet and filming particle streaks with a video camera. Of all the 15 cm span
airfoils that were investigated, one in particular (Figure 1.4) had a vortex wake that demon-
strated three-dimensional characteristics most quickly. The oppositely-signed flap vortices
interacted with the tip vortices, giving rise to a sudden out-of-plane flow. Because the flow
was illuminated at only one vertical cross-section, it was difficult to determine exactly what
was occurring in the vortex wake. To validate these results and better understand the flow
physics, further flow visualization experiments [35] (see Appendix A) were performed at
the U.C. Berkeley Richmond Field Station Towing Tank Facility in June 1999. For these
tests, a larger, 40 cm span, similarly-shaped airfoil was towed down the length of the tank.
Improved flow visualization was achieved by painting florescent dye on the upper surface of
the flaps and wing tips. The test section of the towing tank was volumetrically illuminated
by a CW laser. The results of these experiments revealed that the two, counter-rotating
flap/tip vortex pairs undergo a rapidly growing instability within 50 spans downstream of
the airfoil. Qualitatively, the vortex wake appears somewhat similar to Figures 17 of [14]

and Figure 4 of [40] and, possibly, is being driven by the same instability mechanism.

|/

| 15 cm

Figure 1.4: The airfoil that generated a wake with a rapidly growing instability.

With the observations of this rapidly growing instability, further research was con-
ducted to better understand it. The purpose of this current work is to present the results
of this research. As is often the case in fluid mechanics, the theoretical explanations for
this instability came after the initial experimental observations. Chapter 2 discusses the

fundamental physics of what causes this instability by comparing the stability properties
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of counter- and co-rotating vortex pairs. Chapter 3 presents a linear stability analysis for
two vortex pairs and determines the effects that the additional pair has on the stability
properties of the original counter- and co-rotating pairs. In Chapter 4 the results of a
more refined flow visualization experiment are discussed. Features of the instability, such
as non-linear behavior, are presented. Chapter 5 discusses the PIV measurements that
were made in the wakes of airfoils with triangular flaps. The data from these experiments
provide a quantitative assessment of the circulation strengths of the vortices, their kinetic
energy, internal structure, and trajectories up to several hundred spans downstream from
the airfoils. Finally, in Chapter 6 the wake-alleviation properties of the triangular-flapped
airfoils are discussed by comparing their wakes’ rolling moment and downwash with those

of a conventional, rectangular airfoil.



Chapter 2

Stability Characteristics of a Single

Vortex Pair

2.1 Introduction

To begin analyzing the instability observed in the wake of the triangular-flapped
airfoil, this chapter will consider the stability properties of a single flap/tip vortex pair.
Although the following analyses neglect the effects of the other vortex pair, their simplicity
highlights the underlying physics in a rather straightforward manner. For the sake of
generality, the stability characteristics of both counter- and co-rotating vortex pairs will
be discussed. In Section 2.2, a simplified stability model is presented to demonstrate how
the rate of strain field and the vortex’s self-induced rotation rate interact to bring about
stability or instability to sinusoidal perturbations. In Section 2.3, a complete, linear stability

analysis is performed on arbitrary strength counter- and co-rotating vortex pairs.

2.2 A Simplified Stability Model

The fundamental stability properties of a single counter-rotating or co-rotating vortex
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pair can be explained through the use of a rather simple analytical model that is similar
to that of Widnall et al. [50] . The vortex pair is represented by two infinitely long vortex
filaments that are separated by a distance, d, and have strengths of I'; and I'; and equal
core radii of a (Figures 2.1 and 2.2). For arbitrary I'y and I's, the centroid of the pair
lies a distance y. = I'i1d/(I'1 + I'y) from vortex 2 and the two vortices orbit about this
centroid at a constant angular velocity of Q, = (I'1 + I'y)/(2wd?). The motion of the two
vortices in this equilibrium state is steady and the vortices trace out circular paths as they
orbit about their centroid. Let vortex 2 be sinusoidally displaced in the z-direction by a
long-wavelength perturbation of wavenumber k. The (y, z) location of the perturbation is
in a coordinate system that rotates with the unperturbed location of vortex 2. Regarding
the stability of the perturbation, the question arises as to whether or not the disturbance
amplitude, r = /42 + 22, will grow or decay in time. To answer this question, it is necessary
to determine how the rate of strain field at the perturbed position interacts with vortex
2’s self-induced rotation rate, @. Sections 2.2.1 and 2.2.2 will discuss each of these effects
individually. Sections 2.2.3 and 2.2.4 will describe how they work together to bring about

stability or instability to counter- and co-rotating vortex pairs.

Figure 2.1: Schematic of a single vortex pair.
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Vortex 1 Vortex 2

Figure 2.2: Cross-section of Figure 2.1 showing the perturbation of vortex 2 to the location
(y,2). The (y,z) coordinate system is fixed with respect to the unperturbed position of
vortex 2. Unlike Figure 2.1, vortex 1 is unperturbed in this view.

2.2.1 Rate of Strain Field

The rate of strain field at the perturbed location, (y,z), can be computed by con-
sidering the stream function of the flow. In the following calculations, it is assumed that
vortex 1 is unperturbed, as shown in Figure 2.2. The streamfunction for vortex 1 is defined

as

I I
Uy (y, 2) = —2—;171(7’12) = —ﬁln (y +d)? + 22 (2.1)

where 119 is the distance from vortex 1 to the perturbed location of vortex 2. The stream-

function, W, (y, z), for the rotating reference frame is given by

QOQ

Q,
\Ijrot(?/az) = _77"1:2 = _7[(% + y)2 + 22] (2-2)

which is a solid body rotation about the circulation centroid. The variable 7.9 is the distance
from the centroid to the perturbed location of vortex 2. In a reference frame that rotates
with the unperturbed position of vortex 2, the stream function of the flow is ¥ = ¥y — V,.,;.

The horizontal and vertical velocity components relative to this reference frame are given
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by (v,w) = (%, —%). Performing the differentiation in this expression gives

. 23Ty +Tg) + y22(Ty + Tg) + 2yzd(T'y + Ty) + Tyzd? (2.3)
o 2rd?[(y + d)? + 22] '

—y3(F1 + Fg) — de(?)Fl + 2F2) — yd2(2F1 + FQ) — Fled — yzz(f‘l + Fg)
2md?[(y + d)? + 22]

w =

(2.4)

Converting the velocity field to cylindrical coordinates, (r, ) , where (y, z) = (rcosf,rsinf)

and (ur, ug) = (vcos + wsinf, —vsind + wcosh), yields,

=Ty (rd?*sin26 + rdsinb)
" 21d?(r? + 2drcost + d?)

(2.5)

w — —rd?(Ty + 2T c0s%0) — r2dcosf(3T1 + 2I'g) — r3(I'y 4+ T'y) (2.6)
o 27d?(r? + 2drcosf + d?) '

If it is assumed that the perturbation amplitude, r, is small (r/d << 1), the velocity

field in Egs. 2.5 and 2.6 can be expressed in a more compact form,

1
= _——_— 2 2.
Uy S!S 0 (2.7)

r(fo+ 21 cos?0)
2md?

ug ==

(2.8)

The variable I'1/(2wd?) is the rate of strain on vortex 2 due to vortex 1. Because the
equilibrium flow is steady, the streamlines given by Eqs. 2.7 and 2.8 are identical to the

pathlines that a fluid element would follow in the flow.

2.2.2 Vortex Self-Induced Rotation Rate

The other important aspect of the simplified stability model is the self-induced rota-
tion rate of vortex 2. To complete this simplified model, only the direction of rotation is
needed. However, because the linear stability analysis that will be performed in Section 2.3
requires the quantitative values of the self-induced rotation rate, this section will analyze

the self-induced rotation rate in its entirety.
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Crow [17] analyzed the linear stability characteristics of equal strength, counter-

rotating vortex pairs and utilized the expression
I 2 I 2 1 2 . .
2—k w(ke) = 2—k 5[(003(1%) —1)/(ke)” + sin(ke)/(ke) — Ci(ke)] (2.9)
i i

for the self-induced rotation rate of a vortex. The variable € is the vortex cut-off diameter.
For a Rankine vortex, ¢ = 0.642a. One problem with this self-induced rotation rate is
that it becomes invalid for larger perturbation wavenumbers resulting in the spurious, high
frequency modes plotted in the top graph of Crow’s Figure 9. As a result, it is necessary to
calculate an expression for the rotation rate that is valid for larger wavenumbers. Kelvin
[26] originally accomplished this and, hence, the resulting instability, “Kelvin waves”, bears
his name. Saffman [47] also discusses this instability and, in the following paragraphs, his
derivation will be followed.

Saffman computes a relationship for the rotation rate by performing a stability analy-
sis on an isolated vortex, which has a uniform vorticity core with no axial flow. The radius
of the vortex is taken to be a. The dispersion relationship that results is given by

1 J/,(na) K], (ka) Im\/n? + k2

o _ 2.1
na Jm(na) kaK,,(ka) ka?n? (2.10)

where .J,,, are Bessel functions of the first kind and K,,, are modified Bessel functions of the
second kind. The variable m is the perturbation wavenumber in the azimuthal direction
and k the perturbation wavenumber in the z-direction. The self-induced rotation rate is

given by

r, , I;

w = w = < 2k m) (2.11)
C 2ma?” 2ma? \ /2?2 + K2 :

The variable [ = +1 determines whether or not the rotation direction is retrograde or
co-grade. For [ = —1, the angular velocity is co-grade and the perturbation rotates in a

direction that is the same as that of the swirling flow about the vortex. For [ = 1, the
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ka

Figure 2.3: Comparison of the different self-induced rotation rates, @ (Eq. 2.9) and @’ (Eq.
2.11, I = 1), for of cylindrical vortex of core radius a. For large ka, @’ — 1. Note that @
has been plotted as function of ka and not ke.

angular velocity is retrograde and the perturbation rotates in a direction opposite to that
of the swirling flow about the vortex. The modes for which m = 0 are called “sausaging”
modes because the disturbance is axisymmetric. When m = 1, the disturbance modes
deform the axis of the vortex and are called bending modes. For m > 2, the disturbance
is referred to as a “fluted” mode. In these instances, the cross-section of the vortex is
deformed into an ellipse that rotates down the length of the vortex, giving the appearance
of flutes. For computing the self-induced rotation rate, the bending modes that have m =1
will be utilized. In order to solve for @ at a given value of ka, the dispersion relationship
in Eq. 2.10 is first used to obtain the root, na. With this value of na, Eq. 2.11 can then
be solved for @w. As shown in Figure 12.1-3 of Saffman [47], there are an infinite number
of roots to Eq. 2.10 for [ = £1. In the present analysis, only the lowest frequency roots
are considered in the discussions to follow. Because there is no co-grade root for small na,
the retrograde form of Eq. 2.11 is employed. The functional dependence of this lowest
frequency, retrograde, bending mode is shown in Figure 2.3 along with that of Eq. 2.9.
Figure 2.4 shows perspective and cross-sectional views of the this retrograde mode on a

vortex filament. It can be seen in Figure 2.3 that (ka)?w departs from the exact solution
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as ka increases. When the self-induced rotation rate given by (ka)?w becomes zero, the

stability analysis misrepresents the true physics of the vortex.

al

(a) (b)

Figure 2.4: (a) Perspective and (b) cross-sectional views of the retrograde rotation rate, @,
of a vortex filament.

2.2.3 Stability Characteristics of Counter-Rotating Pairs

With the rate of strain field, (u,,ug), and the retrograde direction of the self-induced
rotation rate, w, known, it is now possible to analyze the stability properties of single
vortex pairs. For a counter-rotating pair (I'; < 0,2 > 0) that has circulation strengths of
IT'1| = O(|T'2|), the rate of strain field about vortex 2 generates a stagnation point flow as
shown by the streamlines in Figure 2.5a. According to Eq. 2.8, the converging and diverging
directions of the flow field, at which ug = 0, occur at 6, = cos™* (& ETFf) In some regions
of the flow field, the azimuthal velocity and vortex 2’s self-induced rotation rate are oriented
in the same direction. In other regions, they are opposed to one another. If uy is equal
and opposite to wr, vortex 2 becomes fixed at one orientation, 6, and diverges radially
at a velocity of u, = —I'1rsin20;/(2md?). The resulting perturbation amplitude grows
exponentially as r = r,e®, where a = —I'1sin260;/(2rd?) and r, is the initial perturbation
amplitude. Therefore, vortex 2 is unstable to disturbances of this wavenumber, k. It can
be seen in Eq. 2.8 that as the strength of vortex 1 is increased, the maximum azimuthal

velocity about vortex 2 becomes more positive. As a result, ug balances only the larger
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(2) (b)

Figure 2.5: Rate of strain field relative to the equilibrium position of vortex 2 for a counter-
rotating pair (I'; <0, 'y > 0). (a) [I'1| = O(|T2]) (b) [T >> |T'].

self-induced rotation rates of vortex 2, which occur at higher wavenumbers (Figure 2.3).
Thus, for the case of [I'1| > |I'2], the unstable mode on vortex 2 has a higher frequency than
that for case of 'y = —I'y. When 'y = —I'9, Egs. 2.7 and 2.8 become identical to those in
Widnall’s [50] Eq. 1.

In the previous paragraph, the condition for instability is shown to be uy = wr,
where both quantities are assumed to be finite. However, an instability can also occur if the
self-induced rotation rate is zero for a particular wavenumber. In this case, the stagnation
point flow rotates vortex 2 to 6,, at which ug = 0, and causes the perturbation to radially
diverge. Although the self-induction rate of @ does not exhibit the property of @ = 0 for
finite ka, there are higher wavenumber modes that do. Widnall [50] and Saffman [47] show
that these modes have zero self-induced rotation rates at wavenumbers higher than that of
the classic Crow instability [17], demonstrating that these instabilities are of a much shorter
wavelength.

For the case of [I's] >> |I'1], the rotation of the reference frame dominates Eq. 2.8
and a nearly circular velocity field is generated (Figure 2.5b). The azimuthal velocity is
negative for all values of 6 and, therefore, spins in the same direction as the self-induced

rotation rate. Consequently, the perturbation on vortex 2 does not become fixed at one
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(@) (®)

Figure 2.6: Velocity field relative to the equilibrium position of vortex 2 for a co-rotating
pair (I'1 >0,y > 0). (a) I'y =O(T'3) (b) 'y >>T.

orientation, but simply rotates with a nearly constant amplitude in a clockwise fashion.

Thus, for the case of |I'y| >> [I'1], vortex 2 is stable to long-wavelength perturbations.

2.2.4 Stability Characteristics of Co-Rotating Pairs

For a co-rotating pair (I'y > 0, I'; > 0), the azimuthal velocity in Eq. 2.8 is negative
for all values of §. Consequently, both uy and @r work in concert to rotate the perturbations
on vortex 2 clockwise. When I'ys >> I'y (Figure 2.6b), the velocity field is very similar to
that of the counter-rotating pair for the case of |I's| >> |I';|. However, when I'; = O(I'y)
(Figure 2.6a), the strain field becomes elliptically-shaped and the perturbation amplitude
varies with 6. Although the radial velocity provides an instantaneous growth rate that can
be equal to that of the counter-rotating pair, the disturbance amplitude can only oscillate
periodically and never decay to zero or grow exponentially large. Therefore, regardless of the
relative strengths of the vortices, the co-rotating pair is linearly stable to long-wavelength
perturbations. A similar conclusion was demonstrated by Jimenez [25], who utilized a more

rigorous stability analysis for the case of 'y =T =1 > 0.
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2.3 Linear Stability Analysis of a Single Vortex Pair

In the previous section, a simplified stability model was employed to demonstrate
the underlying physics that lead to instability growth on one of the vortices in a vortex
pair. While this model is useful in describing the basic stability properties of counter- and
co-rotating vortex pairs, it is not complete in that the perturbations on the other vortex
are ignored. Therefore, the present section will extend the previous analysis by performing
a complete linear stability calculation on single counter- and co-rotating vortex pairs and
quantitatively computing the rate of instability growth as a function of the perturbation

wavenumber.

2.3.1 Mathematical Formulation

The schematic of the vortices is shown in Figure 2.7, which for arbitrary I'; and I'g,
models a flap/tip vortex pair. As mentioned earlier, Crow [17] first computed the stability
characteristics of an equal strength, counter-rotating vortex pair. Bristol [8] later extended
Crow’s analysis to include arbitrary strength counter-and co-rotating vortex pairs. The
following calculations will follow Crow’s derivation and incorporate the changes made by

Bristol.

Figure 2.7: Schematic of the single vortex pair and the geometrical quantities used in the
linear stability analysis.
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The stability analysis begins with the Biot-Savart law, which relates the velocity field
to a known vorticity field. The variable R,,,, which is the distance from an element on

vortex n to another element on vortex m, is given by

mn X ALy,
= (2.12)
Un mzl / 47T|Rmn|3
Ry = ex(mlm - mn) + ey(Sm - Sn) + (I‘;n - rn) (213)

where the first two terms are the unperturbed vortex positions and the last is the radial
perturbation from these positions. The primes in Eq. 2.13 are used to distinguish points
that lie on the same vortex i.e., when n = m. The variable dL,, is the arc-length along

vortex n and has the expression

dL, = (es + 5V da, (2.14)
0Tn
where
rp = €yUn(Tn,t) + e 2n(Tn, t) (2.15)

are the displancements of vortex n in the lateral and vertical directions. The final equation
in this analysis relates the velocity field to the motion of the vortices and comes from
Helmholtz’s first law of vortex motion. This law states that the vortex lines move with
the fluid in an inviscid, barotropic flow under the action of conservative body forces. The

equation that expresses this is

In (2
ot "0z

where (uy,, vy, wy,) are the velocity components of U,, — Q,e, x R,,, which is the motion

) = €yUn + €, Wy (2.16)

of the vortices relative to the rotating frame. Note that the cross-product term is new in
that it does not appear in Crow’s derivation. The stability problem given in Eqs. 2.12
2.13, 2.14, and 2.16 can be linearized by assuming that the perturbations are much smaller

than the vortex separation, |r,| << d, and that the perturbation slopes remain small,



CHAPTER 2. STABILITY CHARACTERISTICS OF A SINGLE VORTEX PAIR 19

|Or,, /O0x| << 1. Equations 2.13 and 2.14 are substituted into Eq. 2.12, which is then
linearized and substituted into the linearized form of Eq. 2.16. The resulting equation for

the perturbation amplitudes is given by

- 2! —zn)— (!, —x,)02!, /Ox!
66_t =y2 Im T=qey [20 [(w,”nfln§2+(5mf)sn)2]/3/2 ]dac;n * (2.17)
s 1% (e et — Wl el Y | — e

which is similar to Crow’s Eq. 6 except for the last term due to the rotation of the coor-
dinate system. This equation has solutions of the form r;,(z,,t) = f'e(qt+ik””"), which when

substituted into Eq. 2.17 gives

Ao _I'gs oo dx I's 5 (oo coskxtkxsinkz
aih = —324 o (@2 +d2)3/2 + 322 [ (z2+d2)3/2 de + (2.18)
hél feoo coskw+kmwssinkxfl de + Qoél
5 Iy~ oo coskx
qz1 = Qﬂ.yl fo 2+d2)3/2 + ﬁy2 fo ($2+d2)3/2‘dl' — (2 19)
y j‘OO coskw+kmwssinkxfl dr — Qogl

along with an additional pair of equations that come about by transposing the subscripts 1
and 2. Evaluating the integrals in Eqs. 2.18 and 2.19, as well as the counterparts for vortex

2, yields

Qi = QFZQ 2+ QFipw 5 d2 wi1 + Qo1 (2.20)
qy2 = QFZQ 22 + Qizi?zpél + 5 d?k 202w 2y + Qs (2.21)
qz1 = —271;22 o1+ 2F22 X2 — o d2 L2 d* @i — Qo (2.22)
G = 5t s i~ 5 ki — Oy (223)

The terms, ¢ (kd) and x(kd), are called mutual induction functions and are defined in Crow
[17]. Figure 2.8 demonstrates the dependence of ¢ and x on kd. The term, w, is the vortex
self-induced rotation rate defined in Eq. 2.9.
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12

Figure 2.8: Dependence of the mutual induction functions, ¥ and x, upon the dimensionless
perturbation wavenumber, kd.

As discussed in Section 2.2.2, one problem with this self-induced rotation rate is that
w becomes invalid for large perturbation wavenumbers. Consequently, the more accurate
rotation rate, @’ (Eq. 2.11), will be used in the analysis to follow. Replacing the terms
k%d?w in Eq,’s 2.20-2.23 with @w* = w’d?/a? and non-dimensionalizing by I's/(27d?) changes

the form of the governing equations to

ayy = —Z1+ HY+Two*s+ T+ 1) (2.24)
age = -T2 +TzZp+ w'Ze+ (T4 1)z (2.25)
a2z = -1+ Pex-Topr— T+ 1Dn (2.26)
azy = —Th+Tiax— @ — T +1)j (2.27)

where o = %q and I' = T'1 /Ty, Equations 2.24-2.27 represent an eigenvalue problem for

the eigenvalue o and eigenvector (1,92, 21, 22)1 . For an equal strength, counter-rotating
pair, I' = —1 and the terms in Eqgs. 2.24-2.27 take on a form similar to that of Crow’s Eq.
8.
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2.3.2 Interpretion of the Governing Equations

A useful exercise in understanding the stability properties of the vortex pair is to
interpret the different columns in Eqgs. 2.24-2.27. The column on the left-hand side of Eq.
2.24-2.27 denotes the rate of change of the perturbations with time. For purely imaginary
a, the perturbations lead to neutrally stable oscillations. When « is positive and real,
the perturbations exponentially increase in time, leading to a growing instability. The first
column of terms on the right-hand side is the influence of the strain field from one vortex on
the perturbations of the other vortex. If the instability analysis is conducted by including
the left-hand side column and only the first column on the right-hand side of Eqs. 2.24-2.27,
the eigenvalues for vortex 1 are 1 with corresponding modes (—1,0,1,0)7 and (1,0, 1,0)7.
The eigenvalues for vortex 2 would likewise be &I" with modes (0, —1,0,1)” and (0,1,0,1)7.
Note that the modes grow or decay at +45° the principle rate of strain directions of the
vortices.

The second column of terms on the right-hand side of Egs. 2.24-2.27 demonstrates how
the perturbations of one vortex affect the velocity field at the other vortex. Consequently,
this column provides a correction to the elements in the first column on the right-hand side
of Eqs. 2.24-2.27. The simplified analysis in Section 2.2 neglected this effect. Employing
the left-hand side column and only the first two columns on the right-hand side of Egs.
2.24-2.27 in the stability calculation yields eigenvalues that have the form

a? = %(FQ + 1+ 20y + %\/(r2 + 14 2Tpx)2 — 42 (1 — x2)(1 — +?) (2.28)

The effect of these velocity perturbations depends upon the value of the perturbation
wavenumber. An example of this is shown in Figure 2.9, which plots the positive growth
rates, a1y and agy, from Eq. 2.28 for I' = —0.5. For small wavenumbers, the velocity
perturbations act to decrease the positive growth rates below the values of 1.0 and —I" = 0.5,
which effectively stabilizes the pair. However, as the wavenumber increases, the influence
of the velocity perturbations diminishes and the growth rates asymptotically approach 1.0

and —TI".
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Figure 2.9: Effect of the velocity perturbations, ¢/ and x, on the positive growth rates,
a1+ and agq, of Eq. 2.28 (I' = —0.5). Note these growth rates do not include the vortex
self-induced rotation rate or the reference frame rotation.

The third column on the right-hand side of Eqgs. 2.24-2.27 represents the self-induced
rotation rate of the vortices. If this were the only term on the right-hand side of Egs.
2.24-2.27, the eigenvalues would be +I'w*i and +w™i, all of which are purely imaginary.
The vortices with these eigenvalues simply rotate in their self-induced velocity fields and
exhibit neutrally stable oscillations in time. The final column of terms in Eqs. 2.24-2.27 is
due to the rotation of the vortex pair about its vorticity centroid. If I' = —1, as is the case
in Crow’s analysis, this column drops out because the vorticity centroid is infinite and the
pair translates vertically downward. Performing a stability analysis with only this column
on the right-hand side of Egs. 2.24-2.27 results in the eigenvalues £(I" + 1)¢, which again
give rise to neutrally stable oscillations.

To see how the rate of strain field, self-induction, and reference frame rotation affect
the stability characteristics of the vortex pair, consider the equations Egs. 2.24 and 2.26. If
the the corrective terms, ¢ and y, are ignored and the variables y; and z; are eliminated,

the equation that results for the eigenvalues is

o?=1—-[Tw* + (I +1)7 (2.29)

The first term on the right-hand side of Eq. 2.29 is the contribution of the strain field

that arises from the presence of the other vortex. Because this is the only positive term
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in Eq. 2.29, it demonstrates that the strain field is the driving mechanism of perturbation
growth. On the other hand, the second terms, which is the effect of self-induction and
frame rotation, are negative. This shows that self-induction and frame rotation contribute
to stability. The physical reason why these two terms stabilize the vortex pair is that they
can rotate a perturbation out of the diverging portion of the strain field, preventing it from
becoming “trapped” there by the ug velocity component (Section 2.2). For a co-rotating
vortex pair, the neutrally stable oscillations arise from the disturbance rotating into and

out of the converging and diverging regions of the strain field.

2.3.3 Solution to the Governing Equation

Solving the linearized eigenvalue problem in Eqs. 2.24-2.27 gives the stability char-
acteristics of a vortex pair with arbitrary circulation strengths and vortex core sizes. The
surfaces plotted in Figure 2.10 display the results of solving Eqs. 2.24-2.27 for —1 <I' <1
and 0 < a/d < 0.5. The plot in Figure 2.10a is the maximum growth rate, au,qq, while that
in Figure 2.10b is the corresponding wavenumber, kd,q:. It can be seen that asne, depends
strongly on I' and only weakly upon a/d. As I increases from -1 to 0, the maximum growth
rate decreases to a minimum and then rises to a maximum value as I' — 07 . This indicates
that counter-rotating vortex pairs with dissimilar circulation strengths have growth rates
that are larger than those of pairs with nearly equal circulation strengths. Note that regard-
less of the core size, the maximum growth rate has an upper value of 1.0, indicating that
the perturbations grow no faster than the rate of strain, I'y/(27d?), of vortex 2 on vortex
1. Another important feature in Figure 2.10a is that co-rotating pairs (I' > 0) are linearly
stable to these long-wavelength perturbations. This result is in agreement with Jimenez [25]

and with the conclusion that was made in Section 2.2 with the simplified stability model.

Figure 2.11a shows a cut through the surface in Figure 2.10a at a/d = 0.312, which
corresponds to a value of €/d = 0.2 from Crow’s paper. The value of ape, = 0.79 at T' =
-1 is the growth rate for the Crow instability between two, counter-rotating vortices. The

maximum growth rate reaches a minimum of 0.77 at I' = —0.89 and does not exceed the
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Figure 2.10: Surfaces of the (a) maximum growth rate, auuqe, and (b) corresponding
wavenumber, kdmnqe, for a single vortex pair.

value for the Crow instability until I' > —0.77. Therefore, if one were designing a vortex
pair that had a linear growth rate greater than that of the Crow instability, it is essential
that one of the counter-rotating vortices be at most 77% as strong as the other vortex when
a/d=0.312.

Figure 2.10b displays the surface of kd,,q,. For counter-rotating vortices, it is evident

1.0
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Figure 2.11: A plot through the (a) maximum growth rate surface and (b) most unstable,
wavenumber surface in Figure 2.10 at a/d = 0.312.

that the most unstable wavenumber increases as I increases from -1 to 0. Consequently, the

wavelength corresponding to the most unstable mode is smaller for dissimilar strength vor-
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tices. Figure 2.11b further illustrates this by plotting kdpq, vs. T at a/d = 0.312. Tt is also
evident in Figure 2.11b that at a fixed value of I'; the most unstable wavenumber increases
with increasing a/d, demonstrating that fatter vortices are unstable to shorter wavelength
perturbations. One feature in Figures 2.10b and 2.11b that requires an explanation is the
behavior of kdpmg, for I' = 0. In reality, kdmqe is becoming infinite as I' — 0~. However,

these figures do not show this due to the finite number of data points used in the calculation.

2.3.4 Growth Rate Curves and Unstable Mode Shapes for I' = —1

The case of I' = —1.0 was previously investigated by Crow [17], who used it to model
the stability characteristics of oppositely-signed, equal strength tip vortices. In this section,
a comparison is made between Crow’s results, which utilize (ka)?w (Eq. 2.9) for the self-
induced rotation rate, and the present analysis, which employs the Kelvin/Saffman model,
@’ (Eq. 2.11), for the self-induced rotation rate. To make a proper comparison with Crow’s
€/d = 0.2, a/d is taken to be equal a/d = €/ds—g=7 = 02545 = 0.312, where Crow’s
Eq. 13 has been utilized. In Figure 2.12; is evident that Crow’s analysis predicts two
bands of instability, while the present analysis demonstrates only one. The higher band of
unstable modes is caused by the rotation rate in Eq. 2.9 falsely going to zero at ka = 1.7
(Figure 2.3). Note that these spurious modes have a maximum growth rate at kd = 5.3,
or ka = kd x a/d = 5.3 x 0.312 = 1.7, corresponding directly to the location at which
(ka)?w in Figure 2.3 goes to zero. At kd = 5.3, the rate of strain field can freely rotate the
perturbations to a region of the flow field where the azimuthal velocity is zero and there
cause them to radially diverge. Because the rotation rate given by w’ remains finite for
increasing ka (Figure 2.3), the stability analysis based on @’ does not yield the false band
of instability.

Another difference between the two stability analyses is the behavior of the growth
rate curves at smaller values of kd. Using Kelvin/Saffman’s rotation rate shifts the growth

rate curve slightly to the left and causes the band of instability to be narrower than that
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Figure 2.12: Growth rate curves for I' = —1.0 based upon the two different self-induced
rotation rate models.
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Figure 2.13: Shapes of the unstable modes as a function of perturbation wavenumber for
I' = —1.0 and a/d = 0.312. The lines at 48° denote the most unstable mode shape.
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based on (ka)?z. The reason for this can be explained by considering the trends of the two
different rotation rate models. Within this range of wavenumbers, @’ is somewhat larger
than that of (ka)?ww. Consequently, these larger rotation rates are better able to stabilize
the flow, bringing about stability somewhat sooner.

Figure 2.13 displays the variation of the instability mode shapes as a function of kd
for I' = —1. These mode shapes are for the stability analysis based on Kelvin/Saffman’s
rotation rate formula. The unstable modes are symmetric, such that g1 = —¢9 and 21 = 25.
As kd increases from zero, the perturbations on vortices 1 and 2 are rotated counter-
clockwise and clockwise by the increasing self-induced rotation rate. When kd = 0.85, the
perturbations pass through the orientation at which the radial velocity componetn, wu,, is
greatest, yielding a maximum growth rate of 0.81. At this wavenumber, vortices 1 and 2 are
oriented at 48.0° and 132.0°. At kd = 1.53, the self-induced rotation rate becomes larger
than the azimuthal velocity field. As a result, the flow is stable to perturbations of higher

wavenumbers.

2.3.5 Growth Rate Curves and Unstable Mode Shapes for I' = -0.25 and
-0.5

To investigate the stability properties for vortex pairs with unequal circulation strengths,
Eqs. 2.24-2.27 are solved for I' = —0.25 and -0.5 with a/d = 0.312. The growth rate curves
for these two cases, as well as that for I' = —1.0, are plotted in Figure 2.14. An immedi-
ately apparent feature is that vortex pairs with greater disparity in circulation strengths are
unstable over a larger range of perturbation wavenumbers. As discussed in Section 2.3.3,
the most unstable modes have growth rates and wavenumbers that increase with increasing
values of I'.

Figure 2.15 demonstrates the shape of the unstable modes for I' = —0.5 (a/d = 0.312)
as a function of the disturbance wavenumber. Note the difference in the horizontal and
vertical scales that are used for vortices 1 and 2. The most unstable mode, which occurs
at kd = 1.54, is indicated in by the lines that are oriented at 41° and 80°. As kd increases

from zero, vortex 2, the stronger in the pair, rotates counter-clockwise from nearly
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Figure 2.14: Growth rate curves for I' = -0.25, -0.5, and -1.0 for a/d = 0.312.
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Figure 2.15: Shapes of the unstable modes as a function of perturbation wavenumber for
I' = —0.5 and a/d = 0.312. The lines at 41° and 80° denote the most unstable mode shape.
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Figure 2.16: Shapes of the unstable modes as a function of perturbation wavenumber for
I' = —0.25 and a/d = 0.312. The lines at 44° and 87° denote the most unstable mode
shape.

vertical orientation. The perturbation amplitude on vortex 2 decreases with increasing
values of kd. Vortex 2 eventually reverses direction and begins to rotate clockwise with
increasing kd. At the largest unstable wavenumber, kd = 2.89, vortex 2 is inclined at
0 degrees. Vortex 1, the weaker vortex, follows a different trend as kd varies. As kd is
increased from zero, vortex 1 rotates counter-clockwise from a nearly vertical orientation.
The amplitude of the perturbation on vortex 2 remains fairly constant as the disturbance
wavenumber is increased. As kd approaches 2.89, vortex 1 becomes oriented at 180°. For
higher wavenumbers, the effects of self-induction become dominant, rendering the pairs
stable. The shape of the unstable modes for I' = —0.25 follow similar trends as those for
I' = —0.5 as shown in Figure 2.16. One difference between Figures 2.15 and 2.16 that should
be noted is that for I' = —0.25, the perturbation amplitude on vortex 2 is smaller than that

for the case of I' = —0.5.

2.4 Closing Remarks

It has been shown in this chapter that arbitrary strength, counter-rotating vortex
pairs are linearly unstable to long-wavelength perturbations, while co-rotating pairs are

stable. Through the use of a simplified stability model, the underlying physics of instability
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growth or decay were shown to depend upon the interaction of the rate of strain field
at a vortex and the vortex’s self-induced rotation rate. While the previous analyses are
helpful in gaining an understanding of the stability properties of single vortex pairs, they
do not completely model the four-vortex wakes observed in the towing tank. Hence, the
next chapter will extend the above discussions to determine the effects that the additional

vortex pair has upon the stability characteristics of the original pair.
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Chapter 3

Stability Characteristics of Two

Vortex Pairs

3.1 Introduction

In Chapter 2, the stability characteristics of a single vortex pair with arbitrary
strength ratios were studied. Since the vortex wake of the triangular-flapped airfoil is com-
prised of two counter-rotating pairs, the present chapter will extend the analyses in Chapter
2 to include the other counter-rotating vortex pair. Additionally, the stability properties
of two co-rotating pairs will be computed to determine whether or not an additional co-
rotating pair destabilizes the original co-rotating pair to long-wavelength perturbations. In
Section 3.2, a simplified stability model, similar to that in Section 2.2, will be employed.
In Section 3.3, a complete linear stability calculation that follows the Crouch analysis [16]

will be performed on several four-vortex systems.

3.2 A Simplified Stability Model

In Section 2.2, a simplified stability analysis was performed by calculating the rate of
strain field about one vortex in a single vortex pair. This discussion illuminated the under-

lying physics of why a perturbation grows or decays on one of the vortices. In this section,
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a similar analysis will be performed for a four-vortex system. Because the equilibrium flow
of the four-vortex system varies periodically in time, it is necessary to first solve for the
locations and velocities of the vortices. Then, the rate of strain field with respect to one of
the vortices can be found at various points in the orbit period.

A schematic of the wake is shown in Figure 3.1. The four vortices are modeled as
vortex filaments that have stream functions, ¥ = g—ﬁln(r), where r is the distance from
the vortex center. The circulation centroids on either half of the wake are separated by a

distance, b*, and the vortices within each pair by a distance, d.

\/de/(FﬁH)

4

.

Figure 3.1: Schematic of the four vortex system. The (3, 2’) coordinate system rotates with
vortex 2.

The wake is symmetric about the centerline, such that I'y = —I'y and I's = —T'4.
Vortex 2 is located a distance I'4d/(T'2 4+ I'y) from the right-hand side centroid and vortex
4 a distance of I'yd/(I's + I'y) from the right-hand side centroid. The vortices within each
pair orbit about their circulation centroid at an angular velocity, Q(¢) = df/dt. For the
signs of I';, shown in Figure 3.1, 2 > 0 for vortex pair 2-4 and 2 < 0 for vortex pair 1-3.

The horizontal and vertical velocity components at vortex n are given by

dyn . Zmn

— = I'n—— 3.1

it = o @)
m#n



CHAPTER 3. STABILITY CHARACTERISTICS OF TWO VORTEX PAIRS 33

dzp ! Ymn

-zn _ § ( _r, Z=n 3.2

dt m=1 m,r?nn ( )
m#£n

where Ymn = Ym — Yn, Zmn = Zm — Zn, and 12, = y2. + z2,.. The positions of the

vortices are computed by numerically integrating Eqs. 3.1 and 3.2 with a fourth order
Runge-Kutta scheme. The initial positions of the vortices are y2(0) = b+ I'yd/(T'y + T'y),
ya(0) = b —T2d/(T'2 + T'a), y1(0) = —y2(0), y3(0) = —ya(0), and 2,(0) = 0,n = 1,2,3,4.

If the time-varying locations of the vortices are known, several additional quantities of

the flow field can be obtained. The positions of the right-hand side centroids are calculated

from
Toya(t) + Tayalt
[y +Ty
Dozo(t) + Laza(t
Iy +1y
Because the wake is symmetric, the left-hand side centroids are given by y; = —y,, and

21 = zp. The velocities, v, = (v, w,), of the circulation centroids are computed by taking
the time derivative of Egs. 3.3 and 3.4 with a central difference scheme. The angular
velocity and radial velocity of vortex n relative to a circulation centroid is found by solving

for Q¢ and v,¢ in

Vi, = Ve + Qper€y X 1€ + Uper€y (3.5)

where v,, is the velocity of vortex n, v. the velocity of the left or right circulation centroid,
and r the distance from vortex n to the circulation centroid in the direction e,..

Using Eqgs. 3.1 and 3.2, the positions of the vortices are solved over one orbit period.
Table 3.1 shows the parameters for the four cases that are computed using the analysis
described above. The variable At is the time step used in the numerical integration, 7gngre =
4m2d?/(Ty + T'4) the orbit time for an isolated vortex pair, and 7 the calculated orbit time.

Further decreases in At for each of the four cases result in changes of O(10™%). Cases 1 and
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2 model counter-rotating vortex pairs that have circulation centroid spacings of b* = 6.0
and b* = 10.0. Cases 3 and 4 model co-rotating vortex pairs that have circulation centroid
spacings of b* = 2.0 and b* = 5.0. For the counter-rotating pairs, I'y + 'y > 0, such that an

airfoil with this type of wake generates positive lift.

| Case | Ty (cm?/s) | Iy (em?/s) | b* (e¢m) | d (em) | At (s) | 7 (s) | Tsingle (S) |

1 1.0 -0.6 6 1 0.06 | 104.7 98.7
2 1.0 -0.6 10 1 0.06 | 100.1 98.7
3 0.4 1.0 2 1 0.02 41.2 28.2
4 0.4 1.0 ) 1 0.02 294 28.2

Table 3.1: Parameters for each of the four-vortex systems.

3.2.1 Equilibrium Flow of the Counter-Rotating Pairs

Figure 3.2 shows the results for the counter-rotating vortex pairs in Case 1. The
positions of the vortices over the orbit period are displayed in Figure 3.2a. The vortex
trajectories are no longer circular as they are for a single vortex pair, but are distorted into
an “a” shape due to the velocity induced by the additional pair. Furthermore, the presence
of the other pair lengthens the orbit period (Table 3.1) so that it increases from a value of
98.7 s for a single vortex pair to 104.7 s for the four vortex system. The angular velocity
of vortex 2 about the right-hand side circulation centroid is plotted in Figure 3.2b. The
angular velocity, €2, of vortex 2 is normalized by €2, = (I's + I'4)/2md?, which is the angular
velocity of a single 2-4 vortex pair separated by a distance d. Unlike the single vortex pair,
vortex 2 orbits the centroid with an angular velocity that varies over the orbit period. When
the two pairs are closely spaced at the beginning and end of the orbit cycle, the additional
pair retards €(t). However, during the middle of the orbit period, the distance between the

vortex pairs increases and the angular velocity tends to vary about a value close to that for

an isolated vortex pair. Figure 3.2c depicts the velocity of vortex 2 relative to the right-
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Figure 3.2: Results for the counter-rotating pairs in Case 1 (I'y = 1 (em?/s), T4 = -0.6
(em?/s), b* = 6 (cm), d = 1 (cm)) over one orbit period: (a) mean vortex positions,
(b) angular velocity and (c) relative velocity of vortex 2 with respect to the right-hand
side circulation centroid, and (d) vertical descent velocity of the left- and right-hand side
circulation centroids.
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Figure 3.3: Results for the counter-rotating pairs in Case 2 (I's = 1 (em?/s), I'y = -0.6

36

(em?/s), b* = 10 (ecm), d = 1 (cm)) over one orbit period: (a) mean vortex positions,
(b) angular velocity and (c) relative velocity of vortex 2 with respect to the right-hand
side circulation centroid, and (d) vertical descent velocity of the left- and right-hand side

circulation centroids.
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hand side centroid along the y'-direction (Figure 3.1). While a single vortex pair has v, = 0
for all time, the additional pair causes v, to oscillate in time. As a result, vortex 2 moves
towards and away from the centroid over the orbit period. The descent velocity of the
vortex system is shown in Figure 3.2d. The variable V, = (I'e + I'4)/27b* in this plot is
the descent velocity of an equivalent counter-rotating vortex pair, where the vortices are
located at the circulation centroids on either half of the wake. Rather than descending at
a constant rate, as would be the case for two equal-strength, counter-rotating vortices, the
four-vortex system descends at a velocity that varies strongly over the orbit period. When
the vortex pairs are close to each other at the beginning and end of the orbit period, the
descent velocity is larger than that of an equivalent counter-rotating system. In the middle
of the orbit cycle, the normalized descent velocity becomes of O(1) as the pairs reach their
maximum separation distance.

The results for Case 2 are shown in Figure 3.3. The trends described for Case 1
are evident in Case 2, though they are less pronounced. For example, the vortex positions
(Figure 3.3a) are more circular than those for Case 1 and the angular velocity, relative
velocity, and descent velocity have oscillation amplitudes that are less than those in Figure
3.2b-d. Although the oscillation amplitude of v, in Figure 3.3c appears to be on the order
of the oscillations in Figure 3.2¢, it should be noted that V, for Case 2 is 60% of that for
Case 1. Finally, the orbit time for Case 2 (Table 3.1) is closer to that of a single vortex

pair.

3.2.2 Equilibrium Flow of the Co-Rotating Pairs

Two co-rotating vortex systems are calculated in Cases 3 and 4. The results for Case
3 are plotted in Figure 3.4. As is the case for the counter-rotating vortex pairs, the presence
of the additional vortex pair renders the vortex trajectories non-circular. When vortices
1 and 2 enter the downwash of the wake, they interact strongly and advect one another
downwards, making the orbit period 46% longer than that of an isolated co-rotating pair.
The angular velocity of vortex 2 about the right-hand side circulation centroid is displayed

in Figure 3.4b. As the vortices orbit about one another, (¢) oscillates in a manner such
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Figure 3.4: Results for the co-rotating pairs in Case 3 (I'y = 0.4 (em?/s), Ty = 1 (cm?/s), b*
=2 (em), d =1 (em)) over one orbit period: (a) mean vortex positions, (b) angular velocity
and (c) relative velocity of vortex 2 with respect to the right-hand side circulation centroid,
and (d) vertical descent velocity of the left- and right-hand side circulation centroids.
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Figure 3.5: Results for the co-rotating pairs in Case 4 (I'y = 0.4 (em?/s), Ty = 1 (cm?/s), b*
=5 (em), d =1 (ecm)) over one orbit period: (a) mean vortex positions, (b) angular velocity
and (c) relative velocity of vortex 2 with respect to the right-hand side circulation centroid,
and (d) vertical descent velocity of the left- and right-hand side circulation centroids.
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that it attains its local extrema at 6 =~ 0°,90°,180°, and 270°. At 0° and 180°, the four
vortices are co-linear and (t) has local maxima. However, at 90° and 270°, vortices 1-3
and 2-4 are vertically aligned and €2(¢) has local minima. Figure 3.4c demonstrates the
velocity of vortex 2 relative to the right-hand side centroid in the y’-direction. Similar to
the counter-rotating vortex pairs, v.¢ varies over the orbit cycle, but it does so in a fashion
that is different from that of the counter-rotating pairs. When vortices 1-2 or 3-4 are exiting
the downwash of the vortex system (0° < 6 < 90° or 180° < 6 < 270°), v,¢; > 0 and the
distance from vortex 2 to the right-hand side centroid is increasing. However, when vortices
1-2 or 3-4 are entering the downwash (90° < 6 < 180° or 270° < 6 < 360°), v,e < 0
and the distance between vortex 2 and the right-hand side centroid is decreasing. The
descent velocity of the vortex system (Figure 3.4d) oscillates during the orbit period and,
in a manner similar to Q(t), it has local extrema at 6 = 0°,90°,180°, and 270°. For 6 ~ 0°
and 180°, the four vortices are co-linear and w, has local minima. On the other hand, at 6
~ 90° and 270°, vortices 1-3 and 2-4 are vertically aligned and w,. attains local maxima.
The results for Case 4, in which b* = 5.0, are displayed in Figure 3.5. The primary
difference in the results of Case 3 and Case 4 is that the oscillation amplitudes of Q(t), vy,
and w, are smaller over the orbit cycle. This indicates that the vortex pairs are behaving
more independently of one another. In fact, the orbit period for Case 4 is only 4.3% greater
than that of an isolated pair. An important conclusion can be drawn from the calculations
of these four cases: as one might expect, the larger the distance between the vortex pairs,
whether they be counter-rotating or co-rotating, the more the individual pairs behave as

isolated, single pairs.

3.2.3 Rate of Strain Field in the Vicinity of Vortex 2

With the time-varying vortex positions, descent velocities, and angular velocities
known, it is now possible to compute the streamlines and, hence, the rate of strain field in
a coordinate system that travels with one of the vortices. In a manner similar to that in
Section 2.2, assume that at a given angle, 6(t), vortex 2 is perturbed from its equilibrium

position by a distance (y/,2’) (Figure 3.1). The streamfunction, which is computed in a
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reference frame that is fixed to the time-dependent position of vortex 2, is given by

\I](yla z/’ t) - \111212 + \11321) + \11421) - \Ilrot - \I]rel - \Ilc (36)

where Wy,9, is the value of the streamfunction of vortex n (n # 2) at the perturbed location

of vortex 2 and is defined as

ry,
\Ianp = _%ln(rrﬂp) (37)

The variable 7,2, is the distance from vortex n to the perturbed location of vortex 2 and is

given by

Tnop = \/[yg(t) — yn(t) + y'cosh — 2'sinb)? + [22(t) — zn(t) + y'sinb + 2’cosb)]? (3.8)

The term

Q(t
Vot = —%rép (3.9)

in Eq. 3.6 is the streamfuction due to the solid-body rotation of vortex 2 about the right-

hand side circulation centroid, where

Teop = \/[yg(t) — ye(t) + ¢/ cost — 2/ sinb]? + [22(t) — 2.(t) + y'sinf + 2'cosb)? (3.10)

is the distance from the right-side circulation centroid, (y.(t), z(t)), to the perturbed loca-
tion of vortex 2. The term

Wiel = Vrel y/ (311)

is the streamfunction due to the motion of vortex 2 relative to the the right-side circulation

centroid in the e, direction. Finally, the term
U, = we(t)2' sinf — y'we(t)cosd (3.12)

is the streamfuction due to the downward velocity, w¢(t), of the right-side circulation cen-
troid.

With the introduction of the additional vortex pair, the question arises as to whether
or not the strain rate field in vortex 2’s reference frame will differ from that computed for a

single vortex pair in Section 3.2.3. Previously, it was shown that a single counter-rotating
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pair with vortices of comparable strengths has a stagnation point flow that counteracts the
self-induced rotation rate of vortex 2, rendering it unstable. However, the single co-rotating
pairs were shown to be stable because the fluid motion about them rotates clockwise, the
same direction as vortex’s self-induced rotation rate. Therefore, the perturbations oscillate
periodically in time. In the present analysis, the stability or instability of vortex 2 is
not quite as simple to determine by merely examining the streamline images. The reason
is that because the equilibrium flow is unsteady, the streamlines found from Eq. 3.6 do
not necessarily match the pathlines that a perturbation would follow. Therefore, in the
discussion to follow, only the qualitative features of the streamlines that may lead to stability

or instability are addressed.

Strain Fields for the Counter-Rotating Pairs

Figures 3.6 and 3.7 demonstrate the streamlines for the two counter-rotating cases.
Each of the plots is rotated at its respective angle, 6(¢), in order to better illustrate the
orientation of vortex 2 in the orbit period. It can be seen in Figure 3.6 and Figure 3.7
that at 8 = 0° , the streamlines are different from those of a single counter-rotating pair
(Figures 2.5a) in that they are shifted slightly to the right. This effect is more apparent for
Case 1 in which the 2-4 vortex pair is located more closely to the other pair. At the other
points of the orbit cycle, the stagnation point flows in Figures 3.6 and 3.7 are very similar
to that in Figure 2.5a. This implies that the effects of the additional vortex pair on the
stability properties of vortex 2 are minimal. It is hypothesized that the instability on one of
the counter-rotating pairs is driven primarily by the strain rate field between the neighboring

vortices within the pair and not by the strain rate field from the other vortex pair.

Strain Fields for the Co-Rotating Pairs

The streamlines for the two co-rotating cases are shown in Figures 3.8 and 3.9. It
is immediately apparent that there is a strong effect of the pair spacing on the streamline
shapes. For Case 3, in which b* = 2.0, the streamlines transition back and forth from an

elliptical, clockwise flow (6 = 0°2,180°) to a stagnation point flow (§ = 90°,270°). This
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Figure 3.6: Rate of strain field about vortex 2 for the counter-rotating vortex pairs in Case
1 Ty =1 (em?/s), T4 = -0.6 (cm?/s), b* = 6 (cm), d = 1 (em)) at various orientations in
the orbit period. The (y/, 2’) coordinate system is fixed with respect to vortex 2.
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o

Figure 3.7: Rate of strain field about vortex 2 for the counter-rotating vortex pairs in Case
2 (Ty =1 (cm?/s), T4y =-0.6 (cm?/s), b* = 10 (cm), d = 1 (em)) at various orientations in
the orbit period. The (y/, 2’) coordinate system is fixed with respect to vortex 2.
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Figure 3.8: Rate of strain field about vortex 2 for the co-rotating vortex pairs in Case 3 (I'y
= 0.4 (cm?/s), T4 = 1 (em?/s), b* = 2 (em), d = 1 (cm)) at various orientations in the
orbit period. The (y/, z’) coordinate system is fixed with respect to vortex 2.
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Figure 3.9: Rate of strain field about vortex 2 for the co-rotating vortex pairs in Case 4 (I'y
= 0.4 (cm?/s), Ty = 1 (em?/s), b* =5 (em), d = 1 (cm)) at various orientations in the
orbit period. The (y/, z’) coordinate system is fixed with respect to vortex 2.
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transitioning is correlated with the angular velocity of vortex 2 about the right-hand side
circulation centroid. It was shown in Section 2.3.2 that the angular velocity has a stabilizing
effect on the stability characteristics of a single vortex pair, rendering the streamlines either
elliptical or nearly circular. Judging from the flow patterns in Figure 3.8, £)(¢) appears to a
have similar effect in the four vortex system. At § = 0°, Q(¢) has a local maximum and the
streamlines are elliptically shaped and directed clockwise. Furthermore, at § = 180°, Q(¢)
has a global maximum and the streamlines appear almost circular. However, at § = 90°
and 270°, ©(t) has local minima and, therefore, has less of a stabilizing influence on the
flow. Consequently, a stagnation point flow is generated at these orientations.

The streamlines for Case 4 appear to be very similar to those of a single vortex pair
(Figure 3.9). Regardless of 0, the only changes that occur to the streamlines are small
displacements from the origin and slight angular shifts in the orientation of the major and
minor axes of the elliptical low. By comparing Case 3 with Case 4, one might infer that the
presence of additional vortex pair destabilizes the original pair in Case 3, but has little effect
upon the original pair in Case 4. However, without numerically calculating the amplitude of
a perturbation over an orbit cycle, no definite conclusions can be drawn at this point. The
linear stability analysis in the following section will provide quantitative results of whether

or not an instability exists for these two co-rotating cases.

3.3 Linear Stability Analysis for Two Vortex Pairs

In this section, the linear stability analysis performed in Section 2.3 will be extended
to include the effects of an additional vortex pair. The disturbance growth rate will be
computed as a function of the perturbation wavenumber for the vortex systems discussed
in the previous section. This will provide a quantitative assessment of the stability prop-
erties of Cases 1-4, which up to this point have only been analyzed in terms of the strain
rate fields. Crouch [16] studied the linear stability properties of two co-rotating vortex
pairs. His stability analysis will be implemented in this section and broadened to include

counter-rotating pairs. The setup of Crouch’s analysis is presented here, but for the sake
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of brevity, the reader is referred to [16] for a thorough discussion of the stability theory.
While w (Eq. 2.9) is used in [16] for the vortex self-induced rotation rate, the more accurate

Kelvin/Saffman rotation rate, @ (Eq. 2.11), will be utilized in the following section instead.

3.3.1 Mathematical Formulation

Crouch’s model of the vortex wake is shown in Figure 3.10. As in Section 3.2, the tip
vortices are labeled 1 and 2 and the flap vortices 3 and 4. Each of the vortices is modeled
as a vortex filament of core radius a. The total positive circulation is I'g = I's + I'y. The
equations are non-dimensionalized by the length scale b* and the time scale by 27b*?/T.
This normalization introduces two dimensionless variables: d/b* and I" = I'9/T'y. The initial

positions of the vortices are

1 N 1 %
y2(0) = 5 +T(d/b) /(L + 1), ya(0) = 5 — (d/b")/(1 + 1) (3.13)
yl(o) = _yQ(O)a y3(0) - _y4(0)7 Zn(()) = 07 n = 1727374 (314)
The dimensionless flap and tip circulations are expressed as I'y = —I"} = 1/(I' + 1);T) =

—I's = T'/(I' + 1). The perturbation wavenumber is denoted by kb* and the instability
growth rate by . The perturbations to vortex n in the y— and z—directions are denoted
by n, and &, (Figure 3.10). The linear stability analysis that follows is identical to that
of Crouch’s with only one change. Rather than using the self-induced rotation rate w in
Eq. 2.9, which is subject to errors for larger wavenumbers (Figure 2.3), the present analysis
employs the rotation rate, w* = w’ b*?/a? from Eq. 2.11. With this change, Eqs. 2.26-2.29
of Crouch [16] become

Vlnn - Wlnn =0 (315)
Voun = I @'b*? /a? (3.16)

Wonn = =T, @'b*?/a? (3.17)
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Figure 3.10: Schematic of the four-vortex system.

The counter-rotating and co-rotating vortex pairs discussed in Section 3.2.3 are now
analyzed to quantitatively assess their stability properties. Table 3.2 displays the values of
I, d/b*, a/b*, and orbit period, 7, of the vortex systems in terms of Crouch’s notation. Note
that the core sizes for each of the four cases are 15% of the flap/tip separation distances.
The time steps, At, used for these vortex systems are also listed in Table 3.2. Further
reductions in At lead to changes of O(1072) in the subsequent results. Table 3.2 lists the
upper wavenumber, kby,,,.,, for which the calculations are made. These values are chosen

such that kaypper = 0.3 for all four cases. The maximum growth rate, vz, corresponding

wavenumber, kb, .., and mode are also listed in Table 3.2 for each of the four cases.

[Case | T | d/o* [ a/b" | At [kbper | 7 | Fbiae | Ymae | Modemas |
1 |-0.6]0.1666 | 0.025 | 0.0020 | 12.0 | 0.188 | 6.3 | 81.8 S1
2 | -0.6 | 0.1000 | 0.015 | 0.0008 | 20.0 | 0.0648 | 10.0 | 209.3 Al
3 | 25 05000 | 0.075 | 0.0250 | 4.0 | 2.325 | 1.18 | 1.63 A2
4 | 25 ]0.2000 | 0.030 | 0.0030 | 10.0 | 0.264 | 5.07 | 1.48 A2

Table 3.2: Parameters for each of the linear stability analyses.

In computing the growth rate curves for Cases 1-4, the unstable eigenmodes are
classified as being either symmetric or anti-symmetric as in [16]. A symmetric mode of

vortices 1 and 2 is one in which the perturbations in the y-direction satisfy n; = —ny and
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those in the z-direction & = £;. An anti-symmetric mode is one in which 1, = 7 and
& = —&. Two symmetric modes, S1 and S2, are defined, where the difference between
them being that for the S1 mode

mns +&1&3 >0 (3.18)

and for the S2 mode
mnz + &§1&3 <0 (3.19)

Similarly, two anti-symmetric modes, A1 and A2, are defined, where Al follows Eq. 3.18
and A2 Eq. 3.19. Examples of the four mode categories are illustrated in Figure 3.11.

S1 S2
Q\LL&/O L?‘?JO
Al A2
© ¢ Y o
Figure 3.11: Classifications of the instability mode shapes.

3.3.2 Stability Properties of Counter-Rotating Pairs

The growth rate curves for Case 1 are demonstrated in Figure 3.12. The left-hand
side and lower axes are the instability growth rate, v, and perturbation wavenumber, kb*,
for the entire four-vortex system. Note that the growth rate y is in terms of the strain rate
field that one vortex pair produces on the other vortex pair. The right-hand side and upper
axes are the corresponding growth rate, a;, and perturbation wavenumber, kd, for a single
vortex pair, as defined in Section 2.3. The growth rate, «, is the rate of strain from vortex 2
on vortex 4. Figure 3.12 demonstrates that all four modes are unstable over a certain range

of wavenumbers. In a manner similar to the Crow instability, the smaller growth rate, S1
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Figure 3.12: Growth rate curves for the counter-rotating vortex pairs in Case 1 (I' = —0.6,

d/b* = 0.1666, a/b* = 0.025). The S1 and A1 modes are denoted by black symbols and the
S2 and A2 modes by gray symbols. The dashed line is the growth rate curve of a vortex
pair comprised of vortices 2 and 4, where I' = —0.6 and a/d = 0.15.

mode is unstable to perturbations of small wavenumbers. This S1 mode has a maximum
growth rate of v = 4.7 at a wavelength equal to A\/b* = 27 /kb* = 27 /0.65 = 9.7. Because
the maximum growth rate, v = 4.7, is greater than 1.0, the instability grows faster than it
would if the two vortex pairs were replaced by two oppositely-signed vortices located at the
left and right circulation centroids.

The most noticeable features of Figure 3.12 are the symmetric and anti-symmetric
modes that are unstable over the majority of the calculated wavenumbers. At kb* = 6.3,
the S1 mode has a maximum growth rate of v = 81.8, which is about 16 times larger than
the Crow-like S1 instability discussed above. The large growth rate S1 mode is unstable
at lower wavenumbers. Note that there are two growth rate curves for the S1 mode at
low perturbation wavenumbers, indicating that the S1 mode manifests itself in two forms

simultaneously. However, in an actual flow, the large growth rate S1 mode would grow
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more quickly than the Crow-like S1 mode and probably become the dominate instability
in the wake. At kb* = 9.5, the S1 mode transitions to a S2 mode as Eq. 3.18 goes from
being positive to negative. Around kb* =~ 10, the S2 mode becomes stable. An interesting
phenomena occurs for the anti-symmetric mode as kb* — 0. Rather than being stable as
the symmetric modes are, the A1 mode exhibits instability to perturbations that have an
infinite wavelength. Consequently, the four-vortex system is unstable to the A1 mode in a
two-dimensional manner. To visualize how this type of instability evolves, the four-vortex
system is perturbed with the Al mode, (91,m2,73,M1,&1,&2,8&3,&4) = (0.00153, 0.00153,
0.00724, 0.00724, 0.00471, —0.00471, 0.00786, —0.00786), at a wavenumber of kb* = 107%.
This Al mode is the eigenvector of the four-vortex system at kb* = 10~%. The total

perturbation magnitude,

4

> 3+ &%) (3.20)

n=1

is chosen to be 0.01666, or 10% of the separation distance between vortices 2 and 4. The
transient behavior of the perturbations is obtained by solving Crouch’s [16] Eqgs. 2.32-2.37.
Figure 3.13a shows the total perturbation magnitude (Eq. 3.20) over one orbit period.
It can be seen that the perturbation magnitude quickly grows to 4.324 by the end of the
orbit period at the predicted growth rate of v = 29.5. Note that the assumption of small
perturbation amplitudes (|n,|/(d/b*) << 1 and |¢,|/(d/bx) << 1) quickly becomes invalid
during the orbit period. Figure 3.13b demonstrates the vortex positions over one orbit
period. In this figure, the initial positions of the four vortices (Egs. 3.13 and 3.14) have
been displaced by the above A1l mode. These initial vortex positions are then numerically
integrated in time through the use of Eqs. 3.1 and 3.2. It can be seen that the vortex
positions are no longer symmetric about the z-axis as they are in Figure 3.2a. Notice that
while the right vortex pair has completed almost 1.5 orbits, the left vortex pair is orbiting
at a lower angular velocity and has not yet completed one orbit period.

A useful exercise is to compare the growth rate curves for Case 1 with those obtained

from a linear stability analysis on a single vortex pair. This makes it possible to determine



CHAPTER 3. STABILITY CHARACTERISTICS OF TWO VORTEX PAIRS 53

the effect that the additional pair has on the stability properties of the four-vortex system.
Repeating the analysis in Section 2.3 for a single vortex pair, which has I' = -0.6 and a/d
= 0.15, results in the dashed growth rate curve displayed in Figure 3.12. When the growth
rate curves of the four-vortex system are scaled according to « and kd, a comparison can be
made between the stability properties of the single vortex pair (vortices 2 and 4) and the
entire four-vortex system. It can be seen in Figure 3.12 that except for small wavenumbers,
both the symmetric and anti-symmetric modes closely follow the growth rate trends of the
single vortex pair. This confirms the statement in Section 3.2.3, which hypothesized that

the instability of the two counter-rotating pairs is driven primarily by the strain rate field

lOOO E T T T T T T T T T T T T T T T ] 10
0.5+ =
o
~ 1.00% 0.0~ =
o c
wS L 4
+ *
N 2 o5 u
= = 0.5
<IWT
0.10 -1.0- =
-15- —
ool . . . 1 N R -2.0 . I . I . I . I . I .
0.00 0.05 0.10 0.15 -1.5 -1.0 -0.5 0.0 0.5 1.0 15
t y/b

Figure 3.13: Two-dimensional instability for the A1 mode in Case 1. (a) Total perturbation
magnitude (Eq. 3.20) over one orbit period when the vortex system is perturbed at kb* =
10~* with the A1 mode, (11,72, 73, M4, &1, &2,€3,€4) = (0.00153, 0.00153, 0.00724, 0.00724,
0.00471, —0.00471, 0.00786, —0.00786). (b) Transient vortex positions (Egs. 3.1 and 3.2)
for 0 < ¢ < 0.188, where the initial positions (Egs. 3.13 and 3.14) have been displaced by
the above Al mode at ¢ = 0.
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‘ Case | I | Max. Growth Rate, anqs ‘ Most Unstable Wavenumber, kd,,qz ‘

1 -0.6 0.91 1.05
2 -0.6 0.84 1.01
single | -0.6 0.86 1.01

Table 3.3: A comparison of the maximum growth rates and corresponding wavenumber for
the counter-rotating vortex pairs in (a) Case 1 and (b) Case 2 with those a single counter-
rotating pair. The dimensionless vortex core size for all three cases is a/d = 0.15. The
maximum growth rates are in the units of I'y/(27d?) and the most unstable wavenumbers
are in the units of kd.

of the vortices within each pair and not by the strain rate field of the other vortex pair. Table
3.3 highlights some of these similarities. The most unstable wavelength for the S1 mode is
A/d = 6.0, while that of the single vortex pair is A\/d = 6.22. The maximum growth rates
of the two- and four-vortex systems are also in close agreement. When scaled according
to the growth rate a and wavenumber kd, the maximum growth rate of the four-vortex
system is o = 0.91, while that of a single pair is & = 0.86. Figure 3.14a shows the shape
of the most unstable eigenmode for the two- and four-vortex systems. It can be seen that
the orientations of the flap and tip vortices in Case 1 are very similar to those of the single
vortex pair.

The effects of decreasing the relative distance between the vortices from d/b* = 0.1666
to d/b* = 0.1 can be seen in the growth rate curves for Case 2 in Figure 3.15. At this smaller
value of d/b*, the long-wavelength, Crow-like, S1 instability between the two vortex pairs
is less pronounced when compared to the larger growth rate modes. Although it is difficult
to discern in Figure 3.15, the growth rates for the dominant symmetric and anti-symmetric
modes coincide with one another for almost all wavenumbers. These modes also transition
from S1 to S2 and Al to A2 at kb* = 12.2. It is near kb* = 0 that the symmetric and
anti-symmetric modes differ slightly from one another. Like in Case 1, the A1l mode is
unstable as kb* — 0, while the S1 mode is stable. The growth rate curve for a single vortex

pair (vortices 2 and 4) is indicated in Figure 3.15 by the dashed line. At this smaller relative
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Figure 3.14: Most unstable mode shapes for the counter-rotating vortex pairs in (a) Case 1
(I' = —-0.6, d/b* = 0.1666, a/b* = 0.025, S1 mode at kb* = 6.3) and (b) Case 2 (I' = —0.6,
d/b* = 0.1, a/b* = 0.015, Al mode at kb* = 10.0). The eigenvectors for the four-vortex
systems are shown in black and that of an equivalent, single vortex pair (I' = —0.6, a/d =
0.15) in gray.

separation distance, the growth rate curves of the four-vortex system are even closer to that

of the single pair. The most unstable eigenmode (A1l at kb* = 10.0) for Case 2 is shown in

Figure 3.14b. Note that the perturbations to the single vortex pair are plotted on the left
side of the wake for a better comparison with the perturbations to the four-vortex system.
It can be seen that the eigenmode for the single pair coincides almost directly with that of
the left-hand pair.

Two important conclusions can be made from the analysis of Cases 1 and 2. First,
the most rapidly growing instability of the two counter-rotating pairs is primarily driven
by the strain rate field of the oppositely signed vortices within each pair. Consequently,
the unstable wavelengths and growth rates are well approximated by those of an isolated,

counter-rotating pair. Second, the primary instability of the four-vortex system grows faster

and occurs at a wavelength that is shorter than that of the classic Crow instability.
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Figure 3.15: Growth rate curves for the counter-rotating vortex pairs in Case 2 (I' = —0.6,

d/b* = 0.1, a/b* = 0.015). The S1 and Al modes are denoted by black symbols and the S2
and A2 modes by gray symbols. The dashed line is the growth rate curve of a vortex pair
comprised of vortices 2 and 4, where I' = —0.6 and a/d = 0.15.
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3.3.3 Stability Properties of Co-Rotating Pairs

The growth rate curves for Case 3 are shown in Figure 3.16. Unlike a single, like-
signed pair that is always stable to long-wavelength perturbations, the two co-rotating
pairs are unstable over a significant range of wavenumbers. Therefore, the additional pair
is the source of instability to long-wavelength disturbances. The S1 mode in Figure 3.16
is similar to the Crow instability, having a maximum growth rate of v = 0.71 at kb* =
0.78 or a wavelength of A/b* = 8.06. The S2 mode demonstrates instability several times
over the range of calculated wavenumbers. For kb* — 0, the S2 mode is unstable in a
two-dimensional sense and at moderate values of kb*, has a peak growth rate of v = 1.15.
At larger wavenumbers, the S2 mode becomes unstable again and appears to attain a local
maximum at kb* =~ 4. The most unstable mode for Case 3 is A2, which has a maximum
growth rate of v = 1.63 at kb* = 1.18. The shape of this most unstable mode is plotted
in Figure 3.17a. In a manner similar to the S2 mode, the A2 mode exhibits instability as
kb — 0 and at larger wavenumbers. One observation from Figure 3.16 is that the growth
rate curves of the S2 and A2 modes both rise above a value of 1.0 over a certain range of
wavenumbers. Physically, this means that the instability is growing faster than it would if
the vortex pairs were replaced by two equivalent strength, counter-rotating vortices located
at the right and left circulation centroids. Therefore, the vortices within each of the pairs or
the vortices from different pairs must be interacting with each other during the orbit period
and generating strain rate fields that have extensional components greater than I'y/2mb*2.

Reducing the relative separation distance between the co-rotating pairs from d/b* =
0.5 to d/b* = 0.2 results in the growth rate curves for Case 4 shown in Figure 3.18. Although
the rate of strain fields in Section 3.2.3 might have left the impression that Case 4 is stable,
the two co-rotating pairs are unstable over certain values of kb*. The S1 mode has a peak
growth rate of v = 0.82 at kb* = 0.70. The S2 and A2 modes are unstable over a narrow
band of wavenumbers and have growth rate curves that lie almost directly on top of one
another. The reason for the close agreement in these growth rate curves is illustrated by
considering the S2 and A2 eigenmodes at A2’s most unstable wavenumber, kb* = 5.07

(Figure 3.17b). The perturbation shapes and magnitudes of the right side pairs are almost
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Figure 3.16: Growth rate curves for the co-rotating vortex pairs in Case 3 (I' = 2.5, d/b* =
0.5, a/b* = 0.075). The S1 and A1l modes are denoted by black symbols and the S2 and A2

modes by gray symbols.
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Figure 3.17: Most unstable mode shape for the co-rotating vortex pairs in (a) Case 3 (A2
mode at kb* = 1.18) and (b) Case 4 (A2 mode at kb* = 5.07). For Case 4, a comparison is
made with S2 mode (gray arrows) at kb* = 5.07.
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Figure 3.18: Growth rate curves for the co-rotating vortex pairs in Case 4 (I' = 2.5, d/b* =
0.2, a/b* = 0.03). The S1 and A1l modes are denoted by black symbols and the S2 and A2
modes by gray symbols.

identical, while those of the left side pairs are out of phase in the axial direction by =«
radians. At this wider spacing between the vortex pairs, the effects of this phase difference
are minimal, such that the perturbations shapes on the left sides of the S2 and A2 modes

become equivalent to one another.

3.3.4 Transient Analysis of the Four Vortex Systems

To gain a deeper insight into how the long-wavelength perturbations grow in time,
a transient analysis is performed on the counter-rotating and co-rotating pairs discussed
in Sections 3.3.2 and 3.3.3. For each of the four cases, the vortex system is perturbed
by the eigenmode corresponding to the most unstable wavenumber. The calculations are
performed over one orbit period. The initial, total perturbation amplitude (Eq. 3.20) is
taken to be 0.005d/b* for the counter-rotating pairs and 0.15d/b* for the co-rotating pairs.
The reason for this difference in initial perturbation magnitudes is due to the large growth

rates of the counter-rotating systems. If the initial perturbation magnitude is chosen to be
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15%d for Cases 1 and 2, |n,|/(d/b*) and |&,|/(d/b*) quickly grow to O(1), invalidating the
assumptions of the linear stability theory. Table 3.4 lists the initial disturbance amplitudes

for all four cases.

[Case | m | m | m | m | & | & | & | & |
1 -2.6e-05 | 2.6e-05 | 4.0e-04 | -4.0e-04 | 1.1e-04 | 1.1e-04 | 4.2e-04 | 4.2e-04
2 -2.5e-05 | -2.5e-05 | 2.6e-04 | 2.6e-04 | 7.8e-05 | -7.8e-05 | 2.3e-04 | -2.3e-04
3 1.2e-02 | 1.2e-02 | -8.1e-03 | -8.1e-03 | -4.8e-02 | 4.8e-02 | 1.8e-02 | -1.8e-02
4 8.8e-03 | 8.8e-03 | -1.2e-03 | -1.2e-03 | -1.9e-02 | 1.9e-02 | 4.7e-03 | -4.7e-03

Table 3.4: Initial perturbations for the transient analysis of the counter-rotating (1-2) and
co-rotating (3-4) cases (Table 3.2).

Transient Behavior of Counter-Rotating Systems

Figure 3.19 illustrates the time-varying perturbation amplitudes and orientations,
& /n:, for the counter-rotating pairs. The solid lines in Figure 3.19a,c are the total per-
turbation amplitudes as given in Eq. 3.20, while the dashed and dotted lines are those of
the right side tip (vortex number 2) and flap vortices (vortex number 4). The disturbance
orientations, &!/n;, are defined with respect to a coordinate system that rotates with the
flap and tip vortices (Figure 3.10). For both counter-rotating cases, the perturbation am-
plitudes grow at the predicted rates with no visible transients. Note that the assumptions
of the linear stability analysis, i.e. small perturbation amplitudes, soon become invalid as
the perturbations grow to the order of the vortex separation distances. Prior to the break-
down of these assumptions, the tip vortex for Case 1, in which the pairs are located more
closely to one another, exhibits a distinct transient in its orientation over the first quarter
of the orbit period. Initially, the perturbation on the tip vortex rotates counter-clockwise,
but shortly thereafter reverses direction and becomes fixed at one orientation. For both
cases, the flap vortices remain at almost constant orientations over the entire orbit period,

indicating that the flaps’ self-induced rotation rates are balancing the azimuthal velocity
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Figure 3.19: Transient perturbation amplitudes and orientations of the most unstable mode
for the counter-rotating vortex pairs: (a-b) Case 1 (I' = -0.6, d/b* = 0.1666, a/b* = 0.025)
and (c-d) Case 2 (I' = —0.6,d/b* = 0.1, a/b* = 0.015). The total perturbation magnitude
is given by Eq. 3.20. The vortex system in Case 1 is perturbed at the most unstable
wavenumber, kb* = 6.3, and that of Case 2 at the most unstable wavenumber, kb* = 10.0.
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Figure 3.20: Three-dimensional views of the counter-rotating vortices for the transient
analysis of the most unstable mode in Case 1 (Figure 3.19a-b) (I' = -0.6, d/b* = 0.1666,
a/b* = 0.025). The numbers in the figure denote vortices 2 and 3. Note that the snapshots
of the orbit period are not equally spaced in time.
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Figure 3.21: Three-dimensional views of the counter-rotating vortices for the transient
analysis of the most unstable mode in Case 2 (Figure 3.19¢-d) (I' = —0.6,d/b* = 0.1,
a/b* = 0.015). The numbers in the figure denote vortices 2 and 3. Note that the snapshots
of the orbit period are not equally spaced in time.
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component from the strain rate field of the tip vortices.

Figures 3.20 and 3.21 show a three-dimensional view of the transient behavior that
better illustrates the evolution of the four-vortex system. The axial length of the vortices in
Figures 3.20 and 3.21 is 1.0 such that one wavelength of the perturbation is shown for Case
1 and 1.6 wavelengths for Case 2. Although the linear stability theory becomes invalid for
finite-size perturbations (by the final frame of both three-dimensional views, the assump-
tions of |&,|/d << 1 and |n,|/d << 1 are no longer valid), the three-dimensional views make
it somewhat easier to speculate how the perturbations might continue to develop as the in-
stability becomes non-linear. It is evident that as the disturbance amplitude increases, the
minimum distance between the perturbations on vortices 1-3 and 2-4 decreases. At t = 0,
the perturbations on vortices 1-3 and 2-4 are approximately separated by a distance d. As
vortices orbit about one another, the disturbances on the weaker vortices (3,4) diverge in
the strain rate fields of the tip vortices. This causes the disturbances on the weaker vortices
to grow closer to the stronger vortices, as can be seen in Figure 3.20 (t = 0.357) and Figure
3.21 (t = 0.417). The linear stability theory discussed in this section cannot predict the
non-linear behavior that would occur as vortices 1-3 and 2-4 approach one another. How-
ever, the work of Klein et al. [30] can be used to describe what is likely to happen as the
instability becomes non-linear. One of the conclusions of [30] is that there is a finite-time
collapse for a single pair of vortex filaments with a negative circulation ratio. This means
that the perturbations on a counter-rotating vortex pair will grow and cause the vortices
to touch one another in a finite time. Although the results of [30] are for a single counter-
rotating pair, it was shown in Section 3.3.2 that the stability characteristics of the Cases 1
and 2 are very similar to those of a single, counter-rotating pair. With this observation, one
can speculate that the counter-rotating vortex pairs in Cases 1 and 2 should also exhibit a
finite time collapse.

This finite-time collapse for the four-vortex systems may occur in the manner shown in
Figures 13 and 16 of [30], which are re-displayed in Figure 3.22. These figures demonstrate
the non-linear interactions of a single vortex pair with a circulation strength ratio of I' =

—0.5. The vortex pair in Figure 3.22a has been perturbed in a symmetric manner (Eq. 5.2
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Figure 3.22: (a) Figure 13a and (b) Figure 16a from [30]. Both of these figures depict a
counter-rotating vortex pair with I' = —0.5. The vortex pair in (a) has been perturbed in
a symmetric manner (Eq. 5.2 of [30]) at ¢ = 0, while that in (b) has been perturbed with
a symmetric helical disturbance (Eq. 5.4 of [30]) at ¢ = 0. Note that the axes and labels
have been modified by the present author for clarity.
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of [30]) at ¢ = 0, while that in Figure 3.22b has been perturbed with a symmetric helical
disturbance (Eq. 5.4 of [30]) at ¢ = 0. The temporal evolution of the vortex filaments is
computed until the filaments make contact with one another or until a hairpin forms on one
of the filaments. At this time, the asymptotic equations in [30] are no longer valid. The
calculations in [30] do not include hairpin removal techniques ([11, 12]), which would allow
for the reconnection of the vortex filaments and further investigation of their non-linear
behavior. In Figure 3.22, the weaker vortex filament, loops around the stronger filament
and is drawn in closer to it until the two filaments exhibit a finite-time collapse. During
this time, the portion of the weaker filament farthest from the stronger filament remains
at a large distance from the collapse point of the two filaments. So, if one could imagine
copying Figure 3.22a or Figure 3.22b and placing this copy just to the left and right of
Figure 3.22a or Figure 3.22b, a series of vortex hoops would emerge. Each of these hoops
would begin and end at the collapse points in the z-direction of Figure 3.22. Although the
calculations in [30] are done for a single vortex pair with initial conditions different than
those described for Cases 1 and 2, the filament interaction described in [30] might occur
between the vortices in the four-vortex systems. In Cases 1 and 2, the non-linear behavior

may lead to the formation of vortex hoops if vortices 1-3 and 2-4 exhibit finite-time collapse.

Transient Behavior of Co-Rotating Systems

The co-rotating cases, displayed in Figure 3.23, demonstrate a different type of tran-
sient behavior. As expected, the total perturbation amplitudes grow significantly slower
than those of the counter-rotating cases. Additionally, the disturbances on the flap and tip
vortices rotate clockwise in the direction of their self-induced rotation rates, as is evident in
the perturbation orientation plots in Figures 3.23b,d. An interesting observation is made
from Case 3 by considering the portion of Figure 3.23a where 1.4 < t < 2.1. Over this
time range, the vortex 4 experiences a strong increase in its perturbation amplitude and a
slowing in the time rate of change of its orientation. Both of these effects imply that the
self-induced rotation rate of vortex 4 is partially balancing the rotational component of the

strain field surrounding it. This incomplete balance is occurring in a portion of the strain
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Figure 3.23: Transient perturbation amplitudes and orientations of the most unstable mode

for the co-rotating vortex pairs: (a-b) Case 3 (I' = 2.5, d/b*

0.5, a/b* = 0.075) and (c-d)

Case 4 (I' = 2.5,d/b* = 0.2, a/b* = 0.030). The total perturbation magnitude is given by
Eq. 3.20. The vortex system in Case 3 is perturbed at the most unstable wavenumber,
kb* = 1.18, and that of Case 4 at the most unstable wavenumber, kb* = 5.07.
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Figure 3.24: Three-dimensional views of the co-rotating vortices for the transient analysis
of the most unstable mode in Case 3 (Figure 3.23a-b) (I' = 2.5, d/b* = 0.5, a/b* = 0.075).
The numbers in the figure denote vortices 2 and 3. Note that the snapshots of the orbit

period are not equally spaced in time.
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Figure 3.25: Three-dimensional views of the co-rotating vortices for the transient analysis
of the most unstable mode in Case 4 (Figure 3.23c-d) (I' = 2.5,d/b* = 0.2, a/b* = 0.030).
The numbers in the figure denote vortices 2 and 3. Note that the snapshots of the orbit
period are not equally spaced in time.
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field that has a relatively large, positive, extensional component. During the latter portion
of the orbit period, the perturbation amplitudes grow to the order of the flap/tip separation
distance and the assumptions of the linear stability analysis become invalid. For Case 4,
the disturbance amplitudes oscillate in a quasi-periodic manner over the orbit period, a
behavior that is reminiscent of the neutrally stable oscillations for a single, co-rotating pair.

Figures 3.24 and 3.25 demonstrate three-dimensional views of the vortices for Cases
3 and 4. Note that the axial length of Figure 3.24 is 27 and that of Figure 3.25 for Case 4
is m/2. As was done previously with the counter-rotating vortex systems, a helpful exercise
is to use the results of the linear stability theory to speculate about the types of non-
linear interactions that might arise in the four-vortex systems. In addition to studying
counter-rotating vortex pairs, Klein et al. [30] also analyzed co-rotating vortex pairs. One
of the conclusions in [30] is that co-rotating vortex pairs do not exhibit finite time collapse.
That is, vortex filaments in a single, isolated, co-rotating pair do not make contact with
one another in a finite amount of time. With the counter-rotating pairs, it was rather
straightforward to draw conclusions from the analysis in [30] and apply them to the four-
vortex systems. The reason for this was that the four-vortex, counter-rotating systems have
stability properties very similar to those of a single counter-rotating pair. However, this is
not the case for co-rotating pairs. As discussed in Section 3.3.3, the additional co-rotating
vortex pair brings about a stark change in the stability characteristics of a single, co-
rotating vortex pair. While an isolated co-rotating pair is linearly stable to long wavelength
perturbations, the four-vortex, co-rotating system is unstable. With this distinct difference
in stability properties, it is difficult to apply the results of [30] for a single, co-rotating
vortex pair to Cases 3 and 4. However, some observations can still be drawn from the
results in Figure 3.23-3.25. For the closely-spaced pairs in Case 3, it can be seen that the
disturbances on vortices 1 and 2 grow to the order of the distance between vortices 1-2 by
the half orbit point. Subsequent non-linear behavior might initiate interactions between
the oppositely-signed vortices 1 and 2. For Case 4, the perturbation amplitudes remain
small (|n,|/(d/b*) << 1 and [&,|/(d/b*) << 1) over the first orbit period, suggesting that

non-linear behavior would not be evident during this time. If the calculations for Case 4
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were extended up to several orbit periods, the disturbance amplitudes would probably grow
to the size of the separation distances of vortices 1-3 and 2-4, perhaps resulting in non-linear

interactions between the flap and tip vortices.

3.4 Closing Remarks

The linear stability characteristics of two vortex pairs have been analyzed in this
chapter. While a single, co-rotating vortex pair is stable to long-wavelength perturbations,
the presence of an additional co-rotating pair brings about instability to the four-vortex
system. On the other hand, the counter-rotating systems have growth rate curves that are
very similar to those of a single, counter-rotating pair. This indicates that the instability
growth in the four-vortex, counter-rotating system is driven primarily by the strain rate field
between the oppositely-signed vortices within each of the pairs.

One interesting observation can be made by considering the growth rate curves of
the counter- and co-rotating vortex systems. A comparison of the Figures 3.12, 3.15, 3.16,
and 3.18 reveals that the maximum growth rates of the co-rotating pairs are almost two
orders of magnitude smaller than those of the counter-rotating pairs. It is as though the
inherent, linear stability of the single co-rotating pairs carries over into their four-vortex
counterparts. The low growth rates of the co-rotating systems suggest that their instability
growth may be difficult to observe in an actual vortex wake. However, the large growth
rates for the counter-rotating pairs indicate that these eigenmodes may be the ones observed
in the wakes of the triangular-flapped airfoil. If these instabilities are observed, they should
arise much sooner than the Crow-like, S1 mode and have a wavelength that is distinctly
shorter.

While Chapters 2 and 3 have focused upon the underlying physics and theoretical
background of vortex stability, the remaining chapters will discuss the experimental research
that was performed with triangular-flapped airfoils. Because the wakes of these airfoils
consist of counter-rotating vortex pairs, the following chapters will emphasize the discussions

in Chapters 2 and 3 that are related to counter-rotating vortices. For a complete discussion
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on the experimental measurements made in co-rotating vortex wakes, the reader is referred
to Chen et al. [9], Bristol et al. [7], and Bristol [8].

In the following chapter, the results of flow visualization measurements are presented
and the non-linear behavior of counter-rotating vortex pairs is addressed. Chapters 5 and
6 will discuss the PIV measurements that were made in the wakes of triangular-flapped

airfoils.
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Chapter 4

Flow Visualization

4.1 Introduction

In order to obtain a more complete look at the trailing vortex wakes of triangular-
flapped airfoils, a new set of flow visualization measurements were made at the U.C. Berkeley
Richmond Field Station towing tank facility. Several changes in the experimental setup de-
scribed in [35] were made in order to improve the quality of the flow visualization images.
Because the resulting wakes are so three-dimensional and complex, volumetric flow visual-
ization was a vital element in understanding the trailing vortex dynamics. The observations
made with this technique provide more information about the flow physics than the two-
dimensional PIV measurements. Furthermore, without the flow visualization data, the PIV

data would have been difficult, if not impossible, to interpret at times.

4.2 Experimental Setup

The towing tank measures 70 m x 2.5 m and has a nominal water depth of 1.5 m.
In the middle of the tank is the test section (Figure 4.1), which has glass windows that
give an underwater view of the tank. A lightweight, aluminum carriage is used to tow
the airfoils down the length of the tank at high speeds. The carriage is driven by a 5-hp

computer-controlled motor (Parker Compumotor), which is located at the upstream end of
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Figure 4.1: Downstream view of the Richmond Field Station towing tank facility. The CW
laser will be discussed in the PIV measurements chapter.

the tank. The motor drives the carriage through a 122 m steel cable that loops around a
drive pulley on the motor shaft and an idle pulley at the far end of the tank. The ends
of the cable are attached to the front and rear of the carriage. To minimize the amount
of droop in the cable and the subsequent oscillations of the carriage during acceleration,
PVC cable suspenders are located every 3 m down the length of the tank. It should be
noted that the motor/controller system was tuned so that the carriage quickly achieves its
maximum velocity with a minimal amount of oscillations about the desired velocity. During
an experiment, the carriage begins its motion at the upstream end of the tank and continues
until it reaches the far end. The reason for doing this is that previous experiments have
demonstrated that stopping the carriage causes the wake vortices to burst. This bursting
phenomena slowly propagates upstream from the airfoil. Therefore, if the carriage is stopped
too close to the test section, the data collected there will become contaminated by this effect.

A modular airfoil (Figure 4.2) is used in this experiment to generate the wake vortices.

Depending on the type of lift distribution desired, different tabs and flaps can be attached
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Figure 4.2: Planform and side view of the three airfoils used in the experiment.
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to the trailing edge of the airfoil. The airfoil and the trailing edge tabs and flaps are made
of 3.2 mm thick stainless steel sheet metal that is rolled to give a camber radius of 17 cm.
The leading edge of the airfoil is tapered for the first 20 mm and the trailing edge tabs and
flaps are tapered over the last 10 mm. On the underside of the airfoil are four 1.1 mm wide
x 1.1 mm deep channels, which house the dye injection tubing. Once a set of tabs and
flaps are bolted to the airfoil, the counter-sunk bolt holes and any gaps between the tabs
and flaps are covered with clear, packing tape (3M), yielding a more streamlined surface.
For this experiment, three airfoil configurations are utilized: a rectangular-shaped airfoil,
which has a span, b, of 40.0 cm and a chord, ¢, of 6.67 cm; an airfoil that has outboard,
triangular flaps, which have a span of 0.25b and a chord of 0.5¢ (denoted from hereafter as
50%c TF); and an airfoil that has outboard, triangular flaps, which have a span of 0.25b
and a chord of 0.75¢ (denoted hereafter as 75%c TF).
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The airfoils are attached to the carriage by a streamlined, stainless steel strut, which
places them approximately 0.5 m beneath the water surface (Figure 4.3). The junction
piece between the strut and the airfoil has the same cross-section as the strut and sits flush
against the curved, upper surface of the airfoil. The streamlined portion of the strut is 5.1
cm wide X 6 mm thick x 76.2 ¢cm long and has four 3.2 mm wide x 3.2 mm deep channels
running along its length to accommodate the dye tubing used for flow visualization. Before
conducting the experiments, flow visualization with particle streaking is performed on the
strut wake to confirm that the strut is not yawed, an effect that could invalidate the wake
vortex measurements. Slight adjustments were made to the strut’s yaw angle so that its
wake is as thin as possible. In order to adjust the airfoil’s angle of attack, the strut can
pivot on its mounting bracket, allowing the angle of attack to vary between £12° in 1°

increments.

Aluminum ounting
Carriage\ L Bracket

Figure 4.3: Top view of the aluminum carriage. The Kodak camera and periscope will be
discussed in the chapter on PIV measurements.
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Visualization of the trailing vortices is accomplished by injecting florescent dye into
the vortex cores with the system shown in Figure 4.4. Four stainless steel tubes, 3.2 mm
in diameter, are inserted into channels that run the length of the streamlined strut. These
channels are then covered with modeling clay and a 76 cm piece of aluminum tape. The
tape is positioned 1.25 cm from the leading edge of the strut. At approximately 2.5 cm
from the end of the strut, the 3.2 mm tubes are joined to 19 gauge thin-walled, stainless
tubes that passes through the airfoil and runs along its underside to the flaps and wing tips.
Because the diameter of the 19 gauge tubing is 1.1 mm (or, as later PIV meausurements
demonstrate, about 2% the diameter of vortex cores), the influence of these tubes on the
vortex roll-up is assumed to be neglible. Clear packing tape (3M) is used to hold the 19
gauge tubing in the channels on the underside of the airfoil. To ensure a seal between the
different diameter tubes, the scheme shown in Figure 4.5 is employed. A 3.2 cm diameter
brass tube and a slanted-end piece of clear tubing (3.2 mm O.D. and 1.1 mm I.D.) are placed
around the 19 gauge tubing between the airfoil and the 3.2 mm stainless steel tubing. When
the airfoil is bolted into place, it pushes against the brass tubing, which forces the clear
tubing into the 3.2 mm stainless steel tubing. The resulting junction forms a watertight
seal up to 30 psi. Fluorescent, sodium salt dye (Sigma Chemical Company, No. F-6377) is
used in this experiment and is mixed with water to the desired mass concentration. Two
separate containers, which are fixed to the carriage, hold the different dye mixtures. The
container that supplies dye to the flap vortices has a dye concentration of 2:100 and the
container that supplies dye to the tip vortices has a dye concentration of 1:100. Both of
these containers are open to the atmosphere, such that the dye is drawn into the vortices
by the low pressure that exists in the vortex cores.

The test section of the towing tank is illuminated with blue light from seven slide
projectors. The blue light is generated by placing a blue, low-pass, glass filter in the slide
container of each projector. The projectors are located approximately 2 m from the viewing
windows of the test section and are arranged in a manner similar to that shown in Figure
4.6. The motion of the dye is recorded with five video cameras: three analog cameras,

whose video signals are recorded on three VCR’s, and two VHS camcorders. An overhead
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Figure 4.4: Dye injection tubing on the triangular-flapped airfoil. For the rectangular airfoil,
only the tubes going to the wing-tips are installed.
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Figure 4.5: Sealing mechanism used to connect the 19 gauge tubes on the airfoils to the 3.2
mm dia. tubes on the strut.
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Figure 4.6: Schematic of the setup used for the flow visualization measurements. For clarity,
not all of the projectors are shown.

(b)

Figure 4.7: (a) Downstream, (b) close-up side, and (c) overhead reference views of the
airfoil. The airfoil is at the same downstream location in each of the views. The arrows
indicate the direction that the airfoil travels during the experiment.
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view is provided by a Sony XC7500C (640 pixels x 480 pixels) camera with an 8 mm lens.
By suspending the camera approximately 2 m above the water surface, the field of view
at the airfoil depth is approximately 170 cm x 130 cm. One problem that is introduce
this view is the distortion of the dye trails due to surface waves generated by the strut. In
order to minimize these waves, metal and plastic gratings are placed on the left and right
walls of the test section at the water surface. Consequently, the waves are dissipated at the
walls rather than being reflected. A side view of the vortex wake is recorded by placing a
Texas Instruments camera with an 8 mm lens against the glass panes in the test section.
The camera is positioned at the same downstream location as the Sony camera. In this
manner, the Sony and Texas Instruments cameras give two orthogonal views of the trailing
vortex wake. The field of view from the Texas Instruments camera is approximately 103 cm
X 77 cm at the airfoil centerline. Another Sony XC7500C camera gives a “three-quarters”
downstream view of the test section. This camera is housed in a waterproof, cylindrical shell
and is suspended in the test section such that its 8mm lens penetrates the water surface to
a depth of about 10 cm. Figure 4.7 demonstrates reference images for these views. In each
of the photos, the airfoil is located at the same downstream position in the test section.
The two VHS camcorders are used to provide overall views of the test section. One
camcorder, located 3 m behind the Texas Instruments camera, gives a side view of the
test section. An additional “three-quarters” downstream view is accomplished by placing
the second camcorder at the upstream end of the test section. This camera is oriented so
that it views the dye trails through the glass panes at an angle. Spatial calibrations are
made for the overhead view and the two side views by filming a ruler at several depths and
lateral locations in the test section. This information is later used to extract the instability
wavelengths and other flow features that are recorded in the dye visualization images.
Because the 8 mm lenses used on the Sony and Texas Instruments cameras have
such a short focal length, it was feared that the images captured with them would have a
significant radial distortion, giving them a “fish-eye” appearance. In order to check for this
distortion, a checkerboard grid, which had 2 cm x 2 cm black and white squares, was filmed

with an 8 mm lens. Analysis of this image revealed that the radial distortion is minimal.
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Therefore, it was deemed that the images filmed with the 8 mm lenses would not have to
be digitally corrected for radial distortion.

A total of 24 flow visualization runs are made by varying the airfoil speed, angle
of attack, and type of airfoil. These parameters are summarized in Table 4.1. The run
numbers for the rectangular and triangular-flapped airfoils are not entirely consistent in
Table 4.1. The reason for this is that the measurements are part of a larger set of flow
visualization experiments. When discussing the results of the flow visualization, the type of
airfoil used in a particular run will be mentioned so as to eliminate any confusion. During
these experiments, the runs were spaced by approximately 20 minutes, allowing the water in
the tank to become quiescent for the next run. At the end of each day of flow visualization,
the tank was mixed with about i of a gallon of non-color safe bleach (Longs brand) in order
to bleach out the residual dye in the tank.

Before discussing the observations made in the wakes of the airfoils, a comment should
be made on the interpretations of the dye visualizations. The dye is taken to be a marker of
the vorticity in the flap and tip vortices. However, the dye does not mark all of the vorticity
in the wake. The reason for this is that the dye is injected at only four distinct points and
not along the entire vortex sheet generated by the airfoils. Since the molecular diffusivity of
water is much smaller than its momentum diffusivity, the dye remains as a partial marker
of the vortex sheet, which rapidly rolls up into vortices. Hence, in the rolled up wake, the
dye marks vorticity, but not all vorticity is marked by dye. At larger downstream distances,
only coherent structures that correlate well with themselves both spatially and temporally
are discussed in the following sections. Therefore, if a large dispersal of dye is observed
in the wake, no attempt is made to relate this to a large dispersal of vorticity. The PIV
measurements will later be employed to quantify the spread of vorticity in the airfoil’s

wakes.
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| Run | Airfoil | U, (cm/s) | a (degrees) |

15 Rect. 500 3
16 Rect. 500 3
18 Rect. 500 2
21 Rect. 300 2
1 50% TF 500 2
2 50% TF 500 0
3 50% TF 500 -1
4 50% TF 300 2
5 50% TF 300 0
6 50% TF 300 -1
7 50% TF 500 2
8 50% TF 300 2
9 50% TF 500 0
10 | 50% TF 300 0
11 | 75% TF 500 2
12 | 5% TF 300 2
13 | 75% TF 500 0
14 | 75% TF 300 0
15 | 75% TF 500 -1
16 | 75% TF 300 -1
17 | 5% TF 500 2
18 | 5% TF 300 2
19 | 5% TF 500 0
20 | 75% TF 300 0

Table 4.1: Parameters for the flow visualization runs. The run numbers are not entirely con-
sistent because these measurements are part of a larger set of flow visualization experiments.

4.3 Rectangular Airfoil Observations

The flow visualization data of the rectangular wing’s wake (run 16, U, = 500 cm/s,
a = 3°) are shown in Figures 4.8 and 4.9. At /b = 0, the airfoil is in the center of the test
section. The vertical black lines in all of the top view images are shadows cast by two of

the steel beams that support the test section windows. Note that the side view images are



CHAPTER 4. FLOW VISUALIZATION 83

x/b =48

x/b=113

x/b=124 x/b =140

Figure 4.8: Close-up side view of the rectangular airfoil’s wake (run 16, U, = 500 cm/s, «
= 3°). Note that the frames are not evenly spaced in z/b.
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Figure 4.9: Top view of the rectangular airfoil’s wake (run 16, U, = 500 cm/s, a = 3.0°).
Note that the frames are not evenly spaced in z/b.
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slightly lower than the reference image shown in Figure 4.7b. The reason for repositioning
the side view camera is to capture the rectangular airfoil’s wake for as long as possible.
When the runs with the triangular-flapped airfoils were performed, the side-view camera
was raised to give the view in Figure 4.7b. It can be seen in Figures 4.8 and 4.9 that after the
two wing-tip vortices form, they descend rather quietly in the test section. While not exactly
parallel, the vortices display only a minimal amount of three-dimensional characteristics,
which are evident in the slight undulations visible in the side view images. Additionally,
solitons, or bulges in the vortex core sizes, are observed to travel upstream along the length
of the vortices at a speed of order 0.5 m/s. Their velocity is not constant in time, but varies
periodically as the solitons make their way through the test section. Unfortunately, the
still, side-view images do not clearly demonstrate these observations of the solitons. As the
vortices approach the bottom of the tank, they begin to exhibit signs of the long-wavelength,
Crow instability (top view, x/b = 144 and 186). At later times, the vortices interact with
the bottom of the tank and break apart. The other runs performed with the rectangular

airfoil demonstrated similar characteristics as those described above.

4.4 'Triangular-Flapped Airfoils Observations

Of the twenty flow visualization runs performed with the two triangular-flapped air-
foils, an instability is observed to develop between the counter-rotating flap and tip vortices
for all towing speeds and angles of attack. The qualitative behavior of the wake does not
appear to depend strongly on the size of the triangular flaps. The instability initially occurs
on the weaker flap vortices and has a wavelength that is on the order of one wingspan. The
perturbation amplitudes on the flap vortices grow rapidly, such that the flap and tip vortices
eventually make contact with one another. At larger downstream distances, the non-linear
evolution of the vortices depends strongly upon the angle of attack. For runs in which
a = 2.0° there is a large exchange of dye across the airfoil centerline within 100 spans,
regardless of the type of triangular-flapped airfoil. However, at —1°, the vortices remain on

either side of the wake and exchange little, if any, dye across the airfoil centerline.
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4.4.1 Observations for Run 1: 50%c TF, a = 2°, U, = 500 cm/s

Figures 4.10-4.12 illustrate the dye visualization images of the downstream, close-up
side, and top views at several downstream locations for run 1. The large bright spot in the
side view images is due to the reflection of one of the projectors. The airfoil and four dye
trails are visible in the three views at z/b = 0. After their initial formation, the flap and tip
vortices orbit outwardly about their common vorticity centroids in a manner similar to that
of the two-dimensional, potential vortex calculations (Section 3.2). PIV measurements in
the wake of this airfoil at the same speed and angle of attack reveal that I';/I'y = —0.37. At
approximately 15 spans or 135° through the orbit period, stationary, instability waves are
observed to rapidly develop on the weaker flap vortices. The wavelength of the instability
is on the order of one wingspan or four times the separation distance between the flap and
tip vortices. Note that this wavelength is shorter than that of the Crow instability between
equal strength, counter-rotating vortices. The stationary, instability waves on the left and
right flap vortices grow independently of one another. The distortion due to the surface
waves is visible in the top view at 2/b = 18 and 21. The perturbation amplitudes quickly
grow such that the flap and tip vortices on the port-side make contact at about 20 spans
and those on the starboard-side at 25 spans. During the time at which the instability is
growing, the perturbations on the flap vortices remain at a relatively fixed orientation with
respect to the rotating reference frame of the flap and tip vortices. This observation leads
to the conclusion that the self-induced rotation rate of the flap vortices is balancing the
rate of strain field from the tip vortices.

As the instability progresses, the flap vortices wrap around the tip vortices, forming
“2”-shaped hoops that have a structure similar to Klein et al.’s [30] Figures 13 and 16. The
spiral “feet” of these hoops behave like vortex rings and advect themselves inward toward
each other. This extends the hoops in the vertical direction, as is evident in the side view
images. By 45 spans, the hoops are oriented vertically and are flung across the center of
the wake. As the hoops approach the airfoil centerline, they pinch off into vortex rings,
occasionally colliding with rings from the opposite side of the airfoil. The vortex rings that

make it to the opposite of the wake collide with the remnants of the tip vortices. As the
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x/b =31

Figure 4.10: Downstream view of the triangular-flapped airfoil (run 1, 50%c TF, U, = 500
cm/s, a = 2.0°). Note that the frames are not evenly spaced in z/b.
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spiral
"feet"

Figure 4.11: Close-up side view of the triangular-flapped airfoil (run 1, 50%c TF, U, = 500
cm/s, a = 2.0 °). Note that the frames are not evenly spaced in x/b.
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Figure 4.12: Top view of the triangular-flapped airfoil (run 1, 50%c TF, U, = 500 cm/s,
a = 2.0°). Note that the frames are not evenly spaced in z/b.
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Figure 4.13: A filament model of the vortex interactions that are observed in the wake of

the 50%c TF airfoil at a@ = 2.0°.
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rings approach the tip vortices, their diameters increase roughly by a factor of two, resulting
in a “m”-like structure in the wake, which is visible in the top view at z/b = 103. By 175
spans, the dye is completely dispersed in the test section and no coherent structures are
visible in the wake. The downstream view and close-up side view do, however, indicate the
presence of downwash at this downstream location.

To better understand the vortex-connection and re-connection processes that are oc-
curring in the wake described above, a useful exercise is to model the vortices as vortex
filaments and trace through the vortex interactions that occur in the wake. Let the flap
and tip vortices have strengths of I'; and 2I'; 4+ I'y, respectively. These circulation strengths
are chosen to make the following analysis more tractable, as will become evident shortly.
Initially, the flap and tip vortices are parallel as shown Figure 4.13a. As the vortices orbit
about one another, the flap filaments develop finite amplitude perturbations (Figure 4.13b),
resulting in the contact of the flap and tip vortices (Figure 4.13c). Neglecting the spiraling
effects and other details of the vortex connection process, the flap filaments join with the
[, portion of the tip filaments, forming closed vortex rings (Figure 4.13d). Assuming that
there are no collisions in the center of the wake, the vortex rings travel to the opposite side
of the wake (Figure 4.13e) and there interact with the tip vortices. To keep the circulation
constant along the length of the filaments, the upper halves of the vortex rings connect
with the remaining I, portion of the tip filament, yielding the “m”-like structure observed
in the flow visualization data (Figure 4.13f). Meanwhile, the bottom halves of the vortex
rings form secondary vortex rings with the I';, portion of the tip filament. Due to the large
dispersal of dye, it is difficult to clearly observe the existence of secondary rings in the flow

visualization data.

4.4.2 Observations for Run 3: 50%c TF, a = -1, U, = 500 cm/s

The flow visualization images for run 3 are shown in Figures 4.14-4.16 for several
downstream locations. By decreasing the angle of attack to —1°, the instability exhibits
a somewhat different behavior than that for the 2° case. The reason for this is that the

flap vortex is relatively stronger with respect to the tip vortex at this angle of attack. PIV
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measurements demonstrate that I'y /I’y = —0.55 at this towing speed and angle of attack.
Additionally, this angle of attack causes the overall vortex strengths to be weaker so that the
pressure in the vortex cores is higher than that of the 2° runs. Consequently, the vortices
draw less dye into their cores, causing the dye trails in Figures 4.14-4.16 to appear fainter
than those for run 1. By approximately 20 spans or 90° through the orbit period, a long
wavelength instability, which is slightly larger than that of the 2° case, appears on the flap
vortices. As this instability grows, the tip vortices also exhibit perturbations of the same
wavelength, though their amplitude is smaller than the disturbances on the flap vortices
(top view, x/b = 23-35). From the side-view images at 19-26 spans, a higher wavenumber
instability can be seen on the flap vortices. The wavelength of this instability is on the
order of the flap/tip separation distance. These instabilities were repeatedly observed in
the -1.0° runs for both triangular-flapped airfoils at U, = 300 and 500 cm/s. The source of
these instabilities is uncertain, but, given their short wavelength, they could be caused by
higher order, radial modes that depend upon the internal structure of the vortices [50]. By
31 spans or 135° through the orbit period, the port-side flap and tip vortices make contact
with one another. After a few more spans, the starboard-side pair does the same. As the
vortices in either of the pairs make contact, the stronger tip vortices “reach out” to the flap
vortices (side view, x/b = 35). The resulting structure of the flap and tip vortices bears a
resemblance to Figure 13 of Klein [30], which is based on a non-linear filament calculation
for a single vortex pair with I' = —0.5.

The “€2” hoops that develop from the flap vortices are slightly larger than those of
the 2° degrees run due to the longer wavelength of the instability (top view, x/b = 39). As
the hoops’ “feet” spiral around the tip vortices, they advect themselves inward towards one
another. This, in turn, extends the hoops vertically. While the flap vortices wrap around
the tip vortices, the tip vortices exhibit a helical structure as illustrated in Figure 4.16 at
x/b = 50 . Eventually, the hoops pinch off into vortex rings, which travel upwards to the
water surface. Unlike the 2° case, there is little exchange of dye across the airfoil centerline.
By 125 spans, there are no coherent features visible in the wake. Additionally, the close-up

side view and downstream view show that there is no evident downwash in the test section.
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Figure 4.14: Downstream view of the triangular-flapped airfoil (run 3, 50%c TF, U, = 500
cm/s, a = -1.0°). Note that the frames are not evenly spaced in x/b.
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Figure 4.15: Close-up side view of the triangular-flapped airfoil (run 3, 50%c TF, U, = 500
cm/s, a = -1.0°). Note that the frames are not evenly spaced in x/b.
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Figure 4.16: Top view of the triangular-flapped airfoil (run 3, 50%c TF, U, = 500 cm/s,
a = -1.0°). Note that the frames are not evenly spaced in x/b.
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This is not to say that the wake has been completely dispersed, since it is probable that the
dye is no longer marking the vorticity. The PIV measurements in Chapter 5 provide a more
accurate analysis to the behavior of the wake at these large downstream distances. The
flow visualization runs performed with the 75%c TF airfoil demonstrate similar qualitative

features as those of the 50%c TF airfoil.

4.4.3 Comparsion with Previous Experiments and Numerical Simulations

A useful exercise is to pause in the discussion of the flow visualization data and
to compare the observations described above with previous experimental and numerical
work. A review of the open literature revealed that there are a few other observations of
a similar type of instability between unequal strength, counter-rotating vortex pairs. One
of the earlier observations of a similar type of instability can be found in flow visualization
photographs taken of a 747 wake [14]. Figure 4.17 shows two of these photographs. During
these flight tests, smoke was injected into the counter-rotating vortex pairs that formed
from the inboard flaps. After the 747 passes overhead, a distinct sinuous instability is seen
to develop along two of the vortices. If the top photo of the 747 is taken as a reference
length, the wavelength of the instability appears to be on the order of one or two wingspans.
Leonard [31] later modeled this 747 wake with a three-dimensional, time-dependent, inviscid
calculation and obtained the results in Figure 4.18. Through private communication with
Dr. Leonard, the author learned that the tip vortex in this calculation has a strength of 0.04,
the outboard flap vortex a strength of 0.116, and the inboard flap vortex a strength of -0.04.
It can be seen in Figure 4.18 that the inboard flap vortex develops a sinusoidal instability
within 10 spans downstream of the generating wing. The wavelength of the instability is
about equal to the initial distance between tip vortices. At larger downstream distances,
the counter-rotating inboard and outboard flap vortices, which have a relative circulation
strength ratio of -0.34, interact in a manner similar to that described above for the 50%c
TF airfoil. The weaker inboard flap vortex wraps around the outboard flap vortex, forming

“€)”-shaped hoops.
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Figure 4.17: Flow visualization in the wake of a 747 airliner [14]. Smoke is injected into the
inboard flap vortices. The times at which the images were taken are shown beneath each
of the photographs.

Figure 4.18: Numerical simulation [31] of the 747 wake [14] shown in Figure 4.17.
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More recently, Quackenbush et al. [39, 40, 41, 42] have studied the interaction of
unequal strength, counter-rotating vortex pairs in an effort to alleviate the sailplane wakes
of military submarines. As discussed in Chapter 1, the goal of their project is to use shape
memory alloys (SMA) to actively perturb the vortices and accelerate the breakup of the
wake. The authors have modeled the flow of two counter-rotating vortex pairs with a
Lagrangian-based vortex method, the results of which are shown in Figure 4.19. In this
figure, the initial distance between the inboard and outboard vortices is d = 0.275b and
the circulation strength ratio of the vortices is I' = —0.58, which yields a wake that is
comparable to that discussed for run 3 in Section 4.4.2 (I' = -0.55, d,/b = 8.6 cm /40 cm =
0.22). The value of d, = 8.6 cm is the initial separation distance between the flap and tip
vortices and is obtained from the PIV data in Chapter 5. The vortices in Figure 4.19 have
been perturbed at three wavelengths: 2b, 4b, and 8b. The 8b perturbation is intended to
excite the Crow instability between the oppositely-signed tip vortices. The results of [40]
demonstrate that the 2b perturbation quickly becomes the most rapidly growing mode. The
authors report that the time scales of the 2b mode are 3-10 times faster than that of the
Crow instability. Although the core sizes are not known for the vortices in Figure 4.19, this
difference between the time scales of the Crow instability and the instability between the
inboard and outboard vortices does agree favorably with the growth rate curves in Figure
3.12 of a similar four-vortex system (I' = -0.6, d/b = 0.33). Qualitatively, the four-vortex
system in Figure 4.19 appears similar to wakes of the triangular-flapped airfoils. It should
be noted that the vortex system in Figure 4.19 is generating an upwash. In Figure 4.19c,
()-shaped hoops are forming as the weaker inboard vortices wrap around the outboard
vortices. By Figure 4.19d, the hoops appear to be separating from the outboard vortices
and transitioning to closed vortex rings.

However, the above studies did not emphasize theoretical or physical explanations
for the causes of the observed instabilities between the unequal strength, counter-rotating
vortex pairs. The following chapter will accomplish this by comparing the instability wave-
lengths in the wakes of the 50%c TF and 75%c TF airfoils with those predicted by the linear

stability analyses described in Chapters 2 and 3.
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Figure 4.19: Numerical simulation of two counter-rotating vortex pairs from [40]. The
inboard and outboard vortices have a relative circulation strength of I' = —0.58 and a
separation distance of d/b = 0.275. The initial perturbations are at wavelengths of 2b, 4b,
and 8b. Note that the wake is generating an upwash.

4.4.4 Finite-Time Collapse of the Counter-Rotating Vortex Pairs

As discussed in Section 3.3.4, one of the conclusions of Klein et al. [30] was that vortex
pairs with negative circulation ratios have a finite-time collapse; that is, the oppositely-
signed vortices contact one another in a finite amount of time. With the flow visualization
data, it is possible to compare the observations of the present study with this conclusion.

For this analysis, the close-up side view is utilized to measure the time it takes the flap
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and tip vortices to first touch one another. The point at which the airfoil is in the center of
the field of view is taken to be ¢ = 0. There are several challenges in measuring the collapse
time with this view. Occasionally, the vortex pair closest to the camera blocks the far vortex
pair, making it difficult to observe the exact moment the far pair makes contact. For the
longer wavelength instabilities, the nodes of contact on the vortex pair closest to the camera
sometimes occur outside the camera’s field of view. Thus, for these runs, no collapse time
for the closer vortex pair is recorded. In spite of these shortcomings, the measurements do
provide an estimate of the collapse times for the different counter-rotating pairs.

The results of the measurements are plotted in Figure 4.20. The y-axis is the collapse
time, 7eor., normalized by Top = 4m%d2/(Ty + I'y), which is the orbit time of two equivalent
strength point vortices separated by a distance d,. The relative circulation strengths of
the vortex pairs are plotted on the z-axis. For the starboard pairs, the values of I'y/I';
and d, are taken from the PIV measurements. However, no PIV measurements were made
of the port-side vortex pairs. It is assumed that the port-side vortex pairs have the same
relative circulation strengths and separation distances as those on the starboard-side. It
can be seen in Figure 4.20 that there is some variation in the collapse time with I'y/T';
however, no definite trends are apparent. What is consistently evident, though, is that
the flap and tip vortices require on the order of one orbit time to make contact with each
other. Furthermore, all of the counter-rotating pairs in this study exhibit finite-time collapse,

confirming the conclusion in [30].

4.5 Closing Remarks

The flow visualization data provides an excellent, qualitative description of the insta-
bility that arises between the unequal strength, counter-rotating vortex pairs. With this
data, the highly complex, three-dimensional, vortex interactions are easily identified as the
instability becomes non-linear. The one drawback of the flow visualization is that it does
not lend itself to other quantitative measurements, such as the circulation strengths of the

vortices, their kinetic energy, and internal structure. When the dye becomes dispersed, it
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Figure 4.20: Collapse time, 7co./Top, as a function of I'y/T';. The collapse times of the
port-side vortex pair are denoted by *’s and those of the starboard-side by diamonds. The
collapse times of the 50%c TF airfoil are shown with black symbols and those of the 75%c
TF airfoil with gray symbols.

is also difficult to determine what is occurring in the vortex wake. For these reasons, the
two-dimensional PIV measurements discussed in the following chapter were carried out to

quantify the behavior of the vortex wake at large downstream distances.
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Chapter 5

PIV Measurements

5.1 Experimental Setup

Velocity and velocity gradient measurements of the vortex wakes were made with a
particle imaging velocimetry (PIV) system, a schematic of which is shown in Figure 5.1.
For a detailed view of the vortices, a Kodak Megaplus ES 1.0 (1008 pixels x 1018 pixels)
digital camera is placed 4.5 m upstream of a 1 cm thick light sheet generated by a dual-
head, pulsed YAG laser (New Wave Gemini). With a 50 mm Canon lens attached to this
camera, the field of view at the light sheet is approximately 60 cm x 60 cm. Reference
images of the rectangular and triangular-flapped airfoils are shown in Figure 5.2. Because
the wakes of the triangular-flapped airfoils spread out so much, only the starboard half
of triangular-flapped airfoil is imaged. To produce the light sheet, the laser’s beams are
passed through a cylindrical lens. The YAG laser and the camera are synchronized with
one another through a counter card (Computer Boards CIO CTR-10) that generates five
timing signals. The first signal is used to trigger the camera, which is operated in triggered,
double exposure mode. When running in this mode, the camera can acquire image pairs at
15 Hz. By varying the timing settings on the counter card, the images within each pair can
be separated anywhere from 1 microsecond to 33 milliseconds. For these measurements, the
time between sequential PIV images ranges from 6 ms to 12 ms, depending on the airfoil

speed. The other four timing signals trigger the Q-switch and lamp-fire inputs on each of
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Figure 5.1: Schematic of the PIV system used to make quantitative measurements.

(b)

Figure 5.2: Reference image of (a) the rectangular airfoil and (b) the triangular-flapped
airfoil in the view of the Kodak camera.
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the laser heads. Because the beams from the laser heads are of slightly different diameters,
the beams are passed through a metal pinhole ensuring that the light sheet is the about
same thickness when either of the heads is firing.

The towing tank test section was seeded with 40 micron silver-coated spheres (Potters
Industries) that have a specific gravity of 0.9. The Kodak camera views the particles
through a periscope that places the camera approximately 120 cm beneath the water surface
(Figure 5.3). To minimize the influence of the periscope on the wake vortices, the periscope
is suspended only 15 cm from the tank wall. The images from the Kodak camera are
transferred to a computer via a digital frame grabber (Matrox Genesis-LC). Since the images
in a pair are so closely spaced in time, the frame grabber treats each monochrome image
pair as a single color image. The program running the frame grabber then splits the color
image into two monochrome images, which are then transferred to a buffer in the computer’s
memory. The number of images that can be sequentially grabbed is limited by the amount
of memory on the computer. The computer used in this experiment has 1 GB of RAM,
allowing a total of 850 images or about 28 seconds worth of data to be captured. After all
of the images have been acquired, they are saved on the computer’s hard drive.

For a wider view of the vortex wake, a second camera and laser setup was used. A
Sony XC-7500C camera with a 50 mm lens is placed 10 m upstream of the test section and
is focused upon a light sheet generated by at 10W CW laser (American Laser Corporation).
The field of view with this camera is 96 cm x 72 cm. To spread the laser sheet out enough
so that it covers this entire field of view, the laser beam is passed through two cylindrical
lenses. The Sony camera is mounted in a waterproof, cylindrical shell and suspended 25 cm
from the tank wall at a depth of 40 cm. The images of particle streaks from this camera
are recorded with the same frame grabber/computer system described above. During the
experiments, the Sony camera was used to obtain a first look at the vortex wakes by filming
particle streaks in the test section. With the approximate trajectory and behavior of the
wake known, the Kodak camera could then be re-oriented to capture the phenomena of
interest. For the rectangular airfoil, this meant adjusting the Kodak camera so that the

airfoil was at the top of the view (Figure 5.2a). However, for the triangular-flapped airfoils,
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Figure 5.3: Upstream view of the periscope assembly.

the Kodak camera was positioned so that the airfoils were nearly centered in the field of
view (Figure 5.2b).

A total of 11 runs with the rectangular airfoil and 24 runs with the triangular-flapped
airfoils were done with the setup described above. The time between sequential runs was
approximately twenty minutes. Because the particles tend to become dispersed after several
runs, the test section of the tank was seeded every three to four hours during the data
acquisition process. Additionally, several PIV images were recorded of the background flow
in the test section prior to each run. With these images, the velocity fluctuations were

calculated to be of order 1 cm/s.

5.2 Image Distortion Correction

One of the drawbacks of placing the Kodak camera/periscope assembly close to the

tank wall is that it results in the camera capturing a skewed image of the vortex wake. A



CHAPTER 5. PIV MEASUREMENTS 106

tilt-and-shift lens could have removed this distortion, but one was not available during the
experiments. To test the severity of the image distortion, a checkerboard grid made of black
and white squares 2 cm X 2 cm was placed in the camera’s field of view and recorded. The
resulting image is shown in Figure 5.4. It is immediately apparent from this image that the
horizontal lines in the grid do not appear horizontal, but at various angles. In addition, the
black and white squares on the right side of the image are slightly larger than those on the
left side. It was felt that this distortion was significant enough to lead to errors in the PIV

measurements and, therefore, it needed to be digitally corrected.
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Figure 5.4: Checkerboard grid imaged by the Kodak camera from the periscope. The image
distortion is noticeable in the horizontal lines that appear at various angles.

The first step in the correction process is to compute a mapping between the distorted
and undistorted camera views. To accomplish this, the perspective drawing technique
described in [6] is followed. Figure 5.5 demonstrates a schematic of the plan and elevation
views of the grid when it is imaged by the Kodak camera. The variables h, and w, are the

streamwise and lateral offsets of the camera from the right side of the distorted view.
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Figure 5.5: Geometric quantities used to compute the mapping between the undistorted

and distorted camera views.
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Therefore, the distance from the camera to the right side of this view is r, = \/h2 + w?2. The
picture plane in Figure 5.5 is called the upon which the grid is projected. For this analysis,
the picture plane is taken to be parallel to the Kodak camera’s CCD. The intersection of
the right side of the grid and the picture plane is called the measuring line (M L). This is
the only vertical line in the perspective view where true, vertical height measurements can
be made. In the picture plane, the true distance y is mapped to a location §. The distance
g is found by drawing a line from the location y on the grid to the Kodak camera location,
which is referred to as the station point (SP). The intersection of this line with the picture
plane yields the distance y. Before 3 can be calculated, the vanishing point must be found
by drawing a line from the station point parallel to the grid. The intersection of this line
and the picture plane is the vanishing point (V' P,), which is a distance [ from the right side
of the grid. After some geometry, one can show that the relationship between y and ¢ is
given by

ysing tanp + § = ycosp (5.1)

where tany = g/r,. Solving Eq. 5.1 for g yields

Yycosp

1+ ysing/ro (5:2)

j=
where tang = r,/I.
The next step is to find a mapping for the vertical location, Zz, in the distorted view.
This is accomplished by drawing vertical lines from the points M L,V P,, and § to the area
left of the elevation view. A horizontal line is extended from the point (y, z) in the elevation
view to the vertical line that originated from the point M L. At the intersection point, A,
of these two lines, another line is drawn to the vanishing point (V' F,), which has a vertical
offset of h. The intersection point, B, gives the mapped location (g, z) of the point (y, z).
It is immediately apparent that Z is related to z by the relationship

_ _Z—h
z:z+yl

(5.3)

Substituting Eq. 5.2 for § into Eq. 5.3 and solving for z provides a one-to-one mapping

between the undistorted and distorted camera views.
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Figure 5.6: Top and bottom rows of the extrema from the convolution of Figure 5.4 with
Eq. 5.4. The lines are fit to these data points with a least-squares method in order to
obtain the vanishing point location, V P.

Before the skewed images can be digitally corrected, the variables h,, w,, [, and
h need to be found. The streamwise and lateral offsets, h, and w,, can be obtained by
simply making the necessary measurements of the experimental setup. On the other hand,
[ and h are calculated from the distorted grid image in Figure 5.4. In order to extract this
information from Figure 5.4, it is necessary to fit lines to the distorted horizontal lines in
Figure 5.4. A process similar to that described in Debevec [18] is followed to accomplish

this task. A checkerboard filter,

-1 - -1 1 - 1

is convolved with the image in Figure 5.4. The size of the filter is 15 x 15, where the size
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of the arrays of 1’s is 8 x 8. When this filter lies on top of four squares that are similar
to the filter, the convolution yields a local maximum. When the filter lies on top of four
squares that are the inverse of the filter, the convolution gives a local minimum. With the
local extrema locations known, the intersection points of the black and white squares are
also known throughout the grid. Lines are fit with a least-squares method to the top and
bottom rows of these points as shown in Figure 5.6. Where these lines intersect reveals the

vanishing point distance, [ = 27,258 pixels, and its vertical offset, h = 405 pixels.
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Figure 5.7: Checkerboard grid from Figure 5.4 that has been digitally corrected by the
mapping in Eq.’s 5.2 and 5.3.

The digital correction process is carried out by using Eq.’s 5.2 and 5.3 to map a point
(y, z) backwards to its corresponding distorted location, (7, z). A four-point interpolation
scheme [1] is implemented to find the pixel intensity at the location (g, z). The pixel value is
then transferred to the location (y, z) in the undistorted domain. This process is continued
until the entire image is generated in the undistorted view. The final undistorted grid image
is shown in Figure 5.7. Because of the correction procedure, the undistorted image (1086

pix x 1018 pix) is larger in the y-direction than the original image (1008 pix x 1018 pix).
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Comparison of Figure 5.4 and 5.7 demonstrates that the horizontal grid lines now appear
horizontal. Furthermore, the black and white squares are uniformly sized over the entire
image. A FORTRAN program was written to perform this digital correction on the PIV

images before they were processed to obtain the velocity and velocity gradient fields.

5.3 Image Processing

The PIV processing was performed on successive image pairs with an adaptive La-
grangian Parcel Tracking (aLPT) Sholl et al. [46] algorithm. This algorithm utilizes in-
terrogation windows that are advected and deformed according to the local velocity and
velocity gradient fields, improving the quality of the data in regions of strong deformation.
The outputs of alLPT are the two-dimensional velocity vector field, u;, and its gradient
tensor, Ou;/0x;, which is computed spectrally. For this experiment, processing of the 1086
pix x 1018 pix images results in data fields that are 66 bin x 62 bin, giving a resolution
of 1 cm/bin. 