
Lawrence Livermore National Laboratory 1Document number

Unclassified

Unclassified

Matthew O’Brien, Greg Greenman and

Spike Procassini

NECDC

October 20, 2008
LLNL-PRES-407916

Domain Decomposition of a

Combinatorial Geometry

Monte Carlo Transport Code

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

2

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• Overview of the Mercury Monte Carlo Transport
Code.

• Domain Decomposition of Combinatorial Geometry.

— What is distributed across processors?

• Example Problem: LIFE Engine with 5.6 Million Cells.

Outline

3

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• Mercury is LLNL’s modern Monte Carlo Transport Code.
• Neutron, gamma and light charged particle transport.

• Solves various criticality, criticality probability and source
transport problems.

• 1D, 2D, 3D structured and unstructured meshes, 3D
Combinatorial Geometry.

• Massively parallel, scalable, supports domain
decomposition and domain replication, with dynamic load
balancing.

• Written in C, being converted to C++.

Mercury Monte Carlo Transport Code

4

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• Define a list of Quadric Surfaces (at most 2nd order surfaces), such as
planes, spheres, ellipsoids, cylinders, cones, etc.

• Combine the surfaces using logical operations to form cells.

• Example: cell1 = insideOf(sphere1) AND outsideOf(sphere2)

∑
≤++≤

=
20

0

kji

kji

ijk zyxa

sphere1 sphere2

cell1

Combinatorial Geometry

5

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• Traditionally, all of the geometry information in a CG Monte Carlo code
has been redundantly stored on all of the processors.

• The particle workload is then divided among all of the processors, for an
embarrassingly parallel solution. (I.e. no coupling between processors
as the calculation is running, only a final reduction to get the total
answer).

• As the geometric description of the problem gets larger and more
complex, this model breaks down. With millions or billions of CG cells,
there is not enough memory on one processor to store all of the
geometry information. The geometry must be decomposed across
processors.

• This creates coupling between processors as particles stream from one
processor to another.

The Need For Domain Decomposition of CG

6

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

Each processor writes the portion of

space it owns, explicitly introducing

domain boundary surfaces for cells

on domain boundaries. A master file

describes how to assemble the

pieces. (new)

Each processor

writes its domains.

A master file

describes how to

assemble the

pieces.

Output (graphics)

Must decide if each surface/cell

should be assigned to each

processor. (Need to domain

decompose user input.) (new)

Input description is

already domain

decomposed.

Input

Adjacent domains known. (new)Adjacent domains

known.

Domain Boundary Crossing

Must check adjacent candidate cells,

don’t explicitly know adjacency.

Adjacent cells

know.

Cell Boundary Crossing

CGMesh

Domain Decomposition: Mesh vs. CG

7

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

User defines global CG

problem. User defines Cartesian Domain Decomposition.

Domain 0 Domain 1

Example

8

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

NIF Target Chamber and Support Structure.

CG Can Be Used To Create Complex Geometries

9

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• The following lists of data can grow arbitrarily long, so
we need a way to distribute the data across processors.

— List of surfaces.

— List of surfaces that define a cell.

— List of cells.

— List of templated (cloned) surfaces and cells.

What Data is Distributed?

10

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

User defines global CG

problem.

Domain 0

If a cell’s bounding box
intersects a domain,

the cell is assigned to
the domain. Some

cells are assigned to

multiple domains.

Domain 1

Cell and Surface Bounding Boxes are Used to Test for Cell-Domain

and Surface-Domain Intersections.

11

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• 3 by 3 by 3 lattice of small spheres surrounded by

a big sphere.

• Divided into 2 domains.

• Decomposition surfaces are written out as part of

the cell definition for visualization.

• Visualized using VisIt’s CG Adaptive visualizer.

16 Domains,

colored by

domain.

Simple Examples

12

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• The entire CG input deck must be read into memory at once.

• The entire list of surfaces/cells is read in, then a surface/cell is kept
on a domain only if the surface’s/cell’s bounding box intersects the

domain’s bounding box.

• The entire list of surfaces that define a cell are read in, then only
the surfaces that intersect the domain that the cell is on our kept.

Scalability Issues

13

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• After initialization, each domain only stores local information; hence
the algorithm is scalable.

• We could treat CG input similar to how mesh geometry is treated:
the geometry is decomposed into separate files and each
processor only deals with the domains that are assigned to it.
(parse time solution).

• If the large cell count arises due to repeated hierarchical structures,
we achieve scalability through the input “template” mechanism.

Scalability Solutions

14

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

foreach(input deck cell)

{

foreach (domain on this processor)

{

temp_cell = MCIO_Input_Cell_3D_H(input deck cell)

Compute_Bounding_Box(&temp_cell);

int on_domain = IsCellOnDomain(temp_cell, domain_index)

if (on_domain)

{

MCIO_Input_Cells_3D_H_Insert_Cell(domain, &temp_cell);

}

}

}

Cell Parsing

15

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• During the Is-Point-In-Cell routine, if there is more than
1 domain, then the algorithm ensures that the input

particle is inside of the input domain.

• If that test passes, continue as before.

• Otherwise the particle is definitely not on the input
domain.

Domain 0 Domain 1

Locate Coordinate

16

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• At the end of the Find-Nearest-Facet tracking routine, the algorithm
calculates the distance to the next implicit domain boundary crossing.

• If the domain boundary is closer than the nearest facet, then:

We have a Domain Boundary Crossing Event.

Otherwise:

We have a Standard Facet Crossing Event.

• The domain boundary crossing is handled as a special case of a facet
crossing.

d1
d2

d1 = distance to domain boundary

d2 = distance to nearest facet.

d1< d2 so we have a

Domain Boundary Crossing Event.

Nearest Facet

17

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• Laser Inertial Fusion/Fission Energy (LIFE) Engine.

1º x 1º Wedge of

Pebbles. r1=423cm,

r2=504cm 569

Pebbles. 1 Pebble (r = 1cm)

contains 2445

Triso pellets.

Each Triso

pellet has 4

Layers.

r = 497µm

569 pebbles * 2445 trisos * 4 layers = 5.6 Million CG cells.

Flibe Coolant: Li, Be, F

Pebble Filler: C

Triso Layer 1: U238, O, C

Triso Layer 2, 3: C

Triso Layer 4: C, Si

LIFE Problem

18

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

Seconds spent doing particle transport:

1proc 2procs 4procs 8procs 16procs

1domain 848 427 226 131 74

2domains 736 235 148 82 52

4domains 668 190 65 34 20

8domains 659 162 57 20 12

-----------------more domains hurts----------

16domains 686 214 113 32 12

64domains 732 207 116 37 18

Pebble with 2447 CG cells, homogenized trisos.

Preliminary Results

Unclassified

19

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

Without domain decomposition, a particle in
the filler must calculate the distance to 2445
surfaces, which is very expensive.

With domain decomposition, a particle in the
filler must calculate the distance to only local
surfaces on this domain, which is significantly
faster.

Domain Decomposition Simplifies Cell Definitions

20

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

Cycle 0:
uniform
assignment
of 4
processors
to each
domain.

• 64 processors, 16 domains.

• The number of processors assigned to each domain is proportional to the domain’s workload.

• Pseudocolor plot of the number of processors working on each domain.

• Red = 17 processors, Blue = 1 processor.

Time �

Existing Dynamic Load Balancing Works with CG Domain

Decomposition.

21

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

Changing Material Colors Allows for BabyRuth Modeling

22

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• Memory requirements for LIFE geometry, with 175
energy groups per cell (for scalar flux) is about 36GB
+ particle memory.

• This is more memory than any one processor has, so
it must be domain decomposed.

• Using input templates, we are able to run this
problem.

Memory Requirements of the LIFE Problem

23

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

Input Deck/Python Script

python

pyDeltaT = 1e-8

end_python

time

time_stop 1.0e-7

delta_t {pyDeltaT}

end_time

python

def definePebble(trisoFile):

file = open(trisoFile, ‘r’)

…

output = “cell … end_cell”

return output

end_python

{definePebble(‘myFile.txt’)}

…

source

category Point

center_coords 0 0 0

end_source

Evaluated Input Deck

time

time_stop 1.0e-7

delta_t 1e-8

end_time

cell … end_cell

…

source

category Point

center_coords 0 0 0

end_source

• python … end_python

defines your python

variables and functions.

• Replaces {curly braces}

with the python value of

the expression.

• This is very useful for

generating complex input

such as the LIFE engine.

Python Input Deck Scripting

24

Weapons & Complex Integration — B Division — Unclassified
Option:LLNL-PRES-407916 Document number

Unclassified

• CG Domain Decomposition is necessary to run Monte
Carlo transport problems with extremely large cell counts.

• Domain Decomposition can actually speed up a
calculation, since only local geometry information is
stored, automatically ruling out non-local geometry.

• Future Work
— CG Domain Decomposition gives you the correct

answer for integrated tallies. But for tallies of an
individual cell, we need to add code to do a
reduction for cells that are split across multiple
domains to get the total answer.

Conclusions

