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• Overview of the Mercury Monte Carlo Transport 
Code.

• Domain Decomposition of Combinatorial Geometry.

— What is distributed across processors?

• Example Problem: LIFE Engine with 5.6 Million Cells.

Outline
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• Mercury is LLNL’s modern Monte Carlo Transport Code.
• Neutron, gamma and light charged particle transport.

• Solves various criticality, criticality probability and source 
transport problems.

• 1D, 2D, 3D structured and unstructured meshes, 3D 
Combinatorial Geometry.

• Massively parallel, scalable, supports domain 
decomposition and domain replication, with dynamic load 
balancing.

• Written in C, being converted to C++.

Mercury Monte Carlo Transport Code
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• Define a list of Quadric Surfaces (at most 2nd order surfaces), such as 
planes, spheres, ellipsoids, cylinders, cones, etc.

• Combine the surfaces using logical operations to form cells.

• Example: cell1 = insideOf(sphere1) AND outsideOf(sphere2)
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Combinatorial Geometry
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• Traditionally, all of the geometry information in a CG Monte Carlo code 
has been redundantly stored on all of the processors.

• The particle workload is then divided among all of the processors, for an 
embarrassingly parallel solution.  (I.e. no coupling between processors 
as the calculation is running, only a final reduction to get the total 
answer).

• As the geometric description of the problem gets larger and more
complex, this model breaks down.  With millions or billions of CG cells, 
there is not enough memory on one processor to store all of the 
geometry information.  The geometry must be decomposed across 
processors.

• This creates coupling between processors as particles stream from one 
processor to another.

The Need For Domain Decomposition of CG
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Each processor writes the portion of 

space it owns, explicitly introducing 

domain boundary surfaces for cells 

on domain boundaries.  A master file 

describes how to assemble the 

pieces. (new)

Each processor 

writes its domains.   

A master file 

describes how to 

assemble the 

pieces.

Output (graphics)

Must decide if each surface/cell 

should be assigned to each 

processor.  (Need to domain 

decompose user input.) (new)

Input description is 

already domain 

decomposed.

Input

Adjacent domains known. (new)Adjacent domains 

known.

Domain Boundary Crossing

Must check adjacent candidate cells, 

don’t explicitly know adjacency.

Adjacent cells 

know.

Cell Boundary Crossing

CGMesh

Domain Decomposition: Mesh vs. CG
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User defines global CG 

problem. User defines Cartesian Domain Decomposition.

Domain 0 Domain 1

Example
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NIF Target Chamber and Support Structure.

CG Can Be Used To Create Complex Geometries
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• The following lists of data can grow arbitrarily long, so 
we need a way to distribute the data across processors.

— List of surfaces.

— List of surfaces that define a cell.

— List of cells.

— List of templated (cloned) surfaces and cells.

What Data is Distributed?
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User defines global CG 

problem.

Domain 0

If a cell’s bounding box 
intersects a domain, 

the cell is assigned to 
the domain.  Some 

cells are assigned to 

multiple domains.

Domain 1

Cell and Surface Bounding Boxes are Used to Test for Cell-Domain 

and Surface-Domain Intersections.
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• 3 by 3 by 3 lattice of small spheres surrounded by 

a big sphere.  

• Divided into 2 domains.

• Decomposition surfaces are written out as part of 

the cell definition for visualization.

• Visualized using VisIt’s CG Adaptive visualizer.

16 Domains, 

colored by 

domain.

Simple Examples
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• The entire CG input deck must be read into memory at once.

• The entire list of surfaces/cells is read in, then a surface/cell is kept 
on a domain only if the surface’s/cell’s bounding box intersects the 

domain’s bounding box. 

• The entire list of surfaces that define a cell are read in, then only 
the surfaces that intersect the domain that the cell is on our kept.

Scalability Issues
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• After initialization, each domain only stores local information; hence 
the algorithm is scalable.

• We could treat CG input similar to how mesh geometry is treated:
the geometry is decomposed into separate files and each 
processor only deals with the domains that are assigned to it. 
(parse time solution).

• If the large cell count arises due to repeated hierarchical structures, 
we achieve scalability through the input “template” mechanism.

Scalability Solutions
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foreach(input deck cell)

{

foreach (domain on this processor)

{

temp_cell = MCIO_Input_Cell_3D_H(input deck cell)

Compute_Bounding_Box( &temp_cell );

int on_domain = IsCellOnDomain(temp_cell, domain_index )

if ( on_domain )

{

MCIO_Input_Cells_3D_H_Insert_Cell(domain, &temp_cell);

}

}

}

Cell Parsing
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• During the Is-Point-In-Cell routine, if there is more than 
1 domain, then the algorithm ensures that the input 

particle is inside of the input domain.

• If that test passes, continue as before.

• Otherwise the particle is definitely not on the input 
domain.

Domain 0 Domain 1

Locate Coordinate
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• At the end of the Find-Nearest-Facet tracking routine, the algorithm 
calculates the distance to the next implicit domain boundary crossing.

• If the domain boundary is closer than the nearest facet, then:

We have a Domain Boundary Crossing Event.

Otherwise:

We have a Standard Facet Crossing Event.

• The domain boundary crossing is handled as a special case of a facet 
crossing.

d1
d2

d1 = distance to domain boundary

d2 = distance to nearest facet.

d1< d2 so we have a

Domain Boundary Crossing Event.

Nearest Facet
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• Laser Inertial Fusion/Fission Energy (LIFE) Engine.

1º x 1º Wedge of 

Pebbles. r1=423cm, 

r2=504cm 569 

Pebbles. 1 Pebble (r = 1cm) 

contains 2445 

Triso pellets.

Each Triso 

pellet has 4 

Layers.

r = 497µm

569 pebbles * 2445 trisos * 4 layers = 5.6 Million CG cells.

Flibe Coolant: Li, Be, F

Pebble Filler: C

Triso Layer 1: U238, O, C

Triso Layer 2, 3: C

Triso Layer 4: C, Si

LIFE Problem
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Seconds spent doing particle transport:

1proc 2procs 4procs 8procs 16procs

1domain   848   427    226    131     74

2domains  736   235    148     82     52

4domains  668   190     65     34     20

8domains  659   162     57     20     12

-----------------more domains hurts----------

16domains  686   214    113     32     12

64domains  732   207    116     37     18

Pebble with 2447 CG cells, homogenized trisos.

Preliminary Results

Unclassified
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Without domain decomposition, a particle in 
the filler must calculate the distance to 2445 
surfaces, which is very expensive.

With domain decomposition, a particle in the 
filler must calculate the distance to only local
surfaces on this domain, which is significantly 
faster.

Domain Decomposition Simplifies Cell Definitions
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Cycle 0:
uniform 
assignment 
of 4 
processors 
to each 
domain.

• 64 processors, 16 domains.

• The number of processors assigned to each domain is proportional to the domain’s workload.

• Pseudocolor plot of the number of processors working on each domain.

• Red = 17 processors, Blue = 1 processor.

Time �

Existing Dynamic Load Balancing Works with CG Domain 

Decomposition.
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Changing Material Colors Allows for BabyRuth Modeling
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• Memory requirements for LIFE geometry, with 175 
energy groups per cell (for scalar flux) is about 36GB 
+ particle memory.

• This is more memory than any one processor has, so 
it must be domain decomposed.

• Using input templates, we are able to run this 
problem.

Memory Requirements of  the LIFE Problem
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Input Deck/Python Script

python

pyDeltaT = 1e-8

end_python

time

time_stop 1.0e-7

delta_t {pyDeltaT}

end_time

python

def definePebble(trisoFile):

file = open(trisoFile, ‘r’)

…

output = “cell … end_cell”

return output

end_python

{definePebble(‘myFile.txt’)}

…

source

category Point

center_coords 0 0 0

end_source

Evaluated Input Deck

time

time_stop 1.0e-7

delta_t 1e-8

end_time

cell … end_cell

…

source

category Point

center_coords 0 0 0

end_source

• python … end_python

defines your python 

variables and functions.

• Replaces {curly braces}

with the python value of 

the expression. 

• This is very useful for 

generating complex input 

such as the LIFE engine.

Python Input Deck Scripting
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• CG Domain Decomposition is necessary to run Monte 
Carlo transport problems with extremely large cell counts.

• Domain Decomposition can actually speed up a 
calculation, since only local geometry information is 
stored, automatically ruling out non-local geometry.

• Future Work
— CG Domain Decomposition gives you the correct 

answer for integrated tallies.  But for tallies of an 
individual cell, we need to add code to do a 
reduction for cells that are split across multiple 
domains to get the total answer.

Conclusions


