
1

awn
Silo/HDF5 Modifications for D
Mark C. Miller

Presented at the Dawn User Forum, April 15, 2010

clements3
Typewritten Text
LLNL-PRES-428015

2

ls/variables

types

ts
Silo Background

Benefits (= flexibility)
• platform independent, self-describing, archiveable data
• random access (more true of post-processors than simulation codes)

Drawbacks (= performance degradation)
• metadata (data a lib writes on behalf of its caller)
• caller is far removed from actual disk I/O behavior/control

Application

Silo Library

HDF5 PDB

sec2

stdio

core . . .

sec2

stdio

meshes/materia

arrays/structs/

files/bytes/offse. . .

3

 I/O patterns
e

posed on write
ndidate

significantly

 time histories

size()

e”

s and MPI-IO
Poor Man’s Parallel I/O
Concurrent, parallel writes work ONLY FOR simple

• Size, shape, distribution of data across MPI tasks is ‘simple’ to describ
• The global monolithic “whole” object is decomposed on read, re-com
• Example: 1D table of particle types, positions, velocities ==> good ca

Large, multi-physics simulations are more complex
• size, shape, distribution and existence of data from task to task varies
• All tasks have piece of (main) mesh...
• but some tasks have only some variables, materials, particles, tracers,

Solution: Poor Man’s Parallel I/O
• Decompose into N GROUPS -- N totally independent of MPI_Comm_
• Only one MPI-task in each group has write access at any one time
• Serial I/O to multiple files, simultaneously
• Very flexible with what each MPI-task needs to do in the way of I/O
• Do not pay cost of “decomposing on read” and “recomposing on writ
• When N==1, get completely serial I/O (doesn’t scale too well!!!)
• When N==MPI_Comm_size() (Ares), get a file per MPI-task
• Ale3d typically chooses N==# I/O channels
• Note: Looking up from Lustre, you can’t tell the difference between thi

4

st size

isk Speed
I/O Performance

Histogram
 writes bytes %writes cum.%writes %bytes

<10^1 bytes: 48 217 20.1680 20.1680 .0001
<10^2 bytes: 41 1485 17.2268 37.3949 .0009
<10^3 bytes: 116 22474 48.7394 86.1344 .0136
<10^4 bytes: 8 30540 3.3613 89.4957 .0186
<10^5 bytes: 0 0 0 89.4957 0
<10^6 bytes: 3 1092492 1.2605 90.7563 .6655
<10^7 bytes: 22 162989412 9.2436 100.0000 99.3010

reque

tr
an

sf
er

 r
at

e

domain size

Silo

HDF5/PDB

sec2/stdio

Theoretical D

5

ance?
Strategies for Improving Perform

Aggregation
• Gather many smaller requests into fewer larger ones
• Need memory (buffer) to do this.
• Try aggregating as much as possible WITHIN one MPI-task first.
• Failing that, start aggregating ACROSS MPI-tasks.

6

am Disk

mory.
lable memory.

.

eates.
Simplest Aggregation Strategy: R
HDF5’s “Core” Virtual File Driver (VFD):

• Stores everything to a growing buffer in memory.
• Writes buffer to file on close.
• Reads ENTIRE file to memory buffer on open.
• Represents upper-bound of what is possible at expense of (a lot) of me
• Only works if when code does I/O, it is dumping less than 50% of avai
• Not a good long term solution

HDF5’s “Split” VFD:
• Splits data into two classes; raw and meta, writing each to its own file
• Keep all metadata in memory using core vfd
• Write raw data using sec2 vfd.
• This results in good performance too.
• But, you wind up with two files for every one “file” that application cr

7

or Silo

le
New HDF5 Virtual File Driver f
Breaks file’s address space into blocks

Does I/O only in blocks
• Allocates enough memory to keep N blocks in memory

Two Parameters set by code
• SILO_BLOCK_SIZE
• SILO_BLOCK_COUNT

Good Values for Dawn
• SILO_BLOCK_SIZE = (1<<20)
• SILO_BLOCK_COUNT=16 (16 Megabytes total)

fi

mem

8

e

ght it was writing

does now.
PI-tasks
lete before return-

.

Other VFDs We May Writ
Aggregate blocks across MPI-tasks

• Wind up with a SINGLE file at the bottom even though application thou
many.

• But the file will still be a valid, HDF5 file

Remote-Core VFD
• Use extra MPI-tasks just for I/O
• Code “writes” to memory in these extra MPI tasks just like core VFD
• Code goes back to compute while data drains to files from the extra M
• This could be fastest as code would NOT have to wait for I/O to comp

ing to compute.

Smart-Split VFD:
• Only one file is produced
• Raw data is block buffered as in new Silo VFD
• Metadata is kept in memory until file close, then tacked onto end of file

	Silo/HDF5 Modifications for Dawn
	Silo Background
	Benefits (= flexibility)
	. platform independent, self-describing, archiveable data
	. random access (more true of post-processors than simulation codes)

	Drawbacks (= performance degradation)
	. metadata (data a lib writes on behalf of its caller)
	. caller is far removed from actual disk I/O behavior/control

	Poor Man’s Parallel I/O
	Concurrent, parallel writes work ONLY FOR simple I/O patterns
	. Size, shape, distribution of data across MPI tasks is ‘simple’ to describe
	. The global monolithic “whole” object is decomposed on read, re-composed on write
	. Example: 1D table of particle types, positions, velocities ==> good candidate

	Large, multi-physics simulations are more complex
	. size, shape, distribution and existence of data from task to task varies significantly
	. All tasks have piece of (main) mesh...
	. but some tasks have only some variables, materials, particles, tracers, time histories

	Solution: Poor Man’s Parallel I/O
	. Decompose into N GROUPS -- N totally independent of MPI_Comm_size()
	. Only one MPI-task in each group has write access at any one time
	. Serial I/O to multiple files, simultaneously
	. Very flexible with what each MPI-task needs to do in the way of I/O
	. Do not pay cost of “decomposing on read” and “recomposing on write”
	. When N==1, get completely serial I/O (doesn’t scale too well!!!)
	. When N==MPI_Comm_size() (Ares), get a file per MPI-task
	. Ale3d typically chooses N==# I/O channels
	. Note: Looking up from Lustre, you can’t tell the difference between this and MPI-IO

	I/O Performance
	Histogram
	writes bytes %writes cum.%writes %bytes
	<10^1 bytes: 48 217 20.1680 20.1680 .0001
	<10^2 bytes: 41 1485 17.2268 37.3949 .0009
	<10^3 bytes: 116 22474 48.7394 86.1344 .0136
	<10^4 bytes: 8 30540 3.3613 89.4957 .0186
	<10^5 bytes: 0 0 0 89.4957 0
	<10^6 bytes: 3 1092492 1.2605 90.7563 .6655
	<10^7 bytes: 22 162989412 9.2436 100.0000 99.3010

	Strategies for Improving Performance?
	Aggregation
	. Gather many smaller requests into fewer larger ones
	. Need memory (buffer) to do this.
	. Try aggregating as much as possible WITHIN one MPI-task first.
	. Failing that, start aggregating ACROSS MPI-tasks.

	Simplest Aggregation Strategy: Ram Disk
	HDF5’s “Core” Virtual File Driver (VFD):
	. Stores everything to a growing buffer in memory.
	. Writes buffer to file on close.
	. Reads ENTIRE file to memory buffer on open.
	. Represents upper-bound of what is possible at expense of (a lot) of memory.
	. Only works if when code does I/O, it is dumping less than 50% of available memory.
	. Not a good long term solution

	HDF5’s “Split” VFD:
	. Splits data into two classes; raw and meta, writing each to its own file.
	. Keep all metadata in memory using core vfd
	. Write raw data using sec2 vfd.
	. This results in good performance too.
	. But, you wind up with two files for every one “file” that application creates.

	New HDF5 Virtual File Driver for Silo
	Breaks file’s address space into blocks
	Does I/O only in blocks
	. Allocates enough memory to keep N blocks in memory

	Two Parameters set by code
	. SILO_BLOCK_SIZE
	. SILO_BLOCK_COUNT

	Good Values for Dawn
	. SILO_BLOCK_SIZE = (1<<20)
	. SILO_BLOCK_COUNT=16 (16 Megabytes total)

	Other VFDs We May Write
	Aggregate blocks across MPI-tasks
	. Wind up with a SINGLE file at the bottom even though application thought it was writing many.
	. But the file will still be a valid, HDF5 file

	Remote-Core VFD
	. Use extra MPI-tasks just for I/O
	. Code “writes” to memory in these extra MPI tasks just like core VFD does now.
	. Code goes back to compute while data drains to files from the extra MPI-tasks
	. This could be fastest as code would NOT have to wait for I/O to complete before return ing to compute.

	Smart-Split VFD:
	. Only one file is produced
	. Raw data is block buffered as in new Silo VFD
	. Metadata is kept in memory until file close, then tacked onto end of file.

