I ! ! . UCRL-JRNL-208636

LAWRENCE
LIVERMORE
NATIONAL
LABORATORY

Smart Libraries: Best SQE Practices for

Libraries with Emphasis on Scientific Computing

M.C. Miller, J.F. Reus, R.P. Matzke
Q.A. Koziol, A.P. Cheng

December 15, 2004

Proceedings of the Nuclear Explosives Code Developer's Conference

UNCLASSIFIED

Proceedings of the NECDC 2004

Smart Libraries:
Best SQE Practicesfor Libraries
with an Emphasis on Scientific Computing (U)

Mark C. Miller*, James F. Reus*, Robb P. Matzke*
Quincey A. Koziol**, Albert P. Cheng**

*Lawrence Livermore National Laboratory, Livermore, CA. 94550
**National Center for Supercomputing Applications, Urbana-Champaign, IL. 61820

As scientific computing applications grow in complexity, more and more
functionality is being packaged in independently devel oped libraries. Worse, as
the computing environments in which these applications run grow in complexity, it
gets easier to make mistakesin building, installing and using libraries as well as
the applications that depend on them. Unfortunately, SQA standards so far

devel oped focus primarily on applications, not libraries. We show that SQA
standards for libraries differ from applications in many respects. We introduce
and describe a variety of practices aimed at minimizing the likelihood of making
mistakes in using libraries and at maximizing users’ ability to diagnose and
correct them when they occur. We introduce the term Smart Library to refer to a
library that is devel oped with these basic principlesin mind. We draw upon
specific examples from existing products we believe incor porate smart features:
MPI, a parallel message passing library, and HDF5 and SAF, both of which are
parallel 1/0 libraries supporting scientific computing applications. We conclude
with a narrative of some real-world experiences in using smart libraries with
Ale3d, Vislt and SAF. (U)

I ntroduction

It can be difficult to build, install and use a scientific computing application that has

numerous and complex dependencies on third-party libraries. In Fig. 1, we haveillustrated
some of the libraries the Ale3d application can be linked with. The lines in the figure are
meant to indicate one library’ s dependency on another. For example, many of the libraries
Ale3d uses depend on the Message Passing Interface (MPI) library.

In using an application such as this, often, it can be difficult smply to get the

application to compile and link. Next, although it may compile and link ok, it may not run

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

correctly. Worse, it could run correctly but produce incorrect results. Or, it could run
correctly, produce correct results but run 2-3x more slowly than necessary.

None of these issues should be seen as aflaw in Ale3d. On the contrary, a strength of
Ale3d isits ability to take advantage of capabilities available in independently developed
libraries. Nonethel ess, the more libraries an application uses and in particular the more
interdependencies they have, the more challenging it can be to get them all to play well
together. Often, many problems such as these are a direct result of mistakes made in
compiling and/or linking to the various libraries the application needs.

Ale3d

G Coersa

H

e}@

Fig. 1. Some of the libraries Ale3d can be linked with and their interdependencies

In this paper we introduce and describe a variety of Software Quality Engineering
(SQE) practices aimed at minimizing the likelihood of making mistakesin using libraries
and at maximizing users ability to diagnose and correct them when they occur. This paper
begins with an overview of key differencesin SQA standards for libraries and
applications. It then introduces and describes several SQE practices under the broad theme
of Smart Libraries. A smart library utilizes avariety of SQE practices aimed at keeping
users and library developers alike from making various mistakes; mistakesin usage, in
documentation, in configuration and installation, in dealing with API changes, mistakes
leading to performance degradation and/or parallel deadlock and so on. To be sure,
making alibrary smart is not merely amatter of rigorous error checking. Whilethat is part
of it, asmart library is also flexible both in how much work it does to detect mistakes and
in how much it enables users to diagnose and correct them.

Throughout this paper, we use the term “ Smart Library” to refer to alibrary that is
developed with these principlesin mind. In addition, we use the term “ Client” to refer to
an application that makes use of alibrary. Finally, when you see theterm “ User” itis
important to remember we are referring to a user of alibrary. We will use the term * End-
User” when we need to refer to the user of an application itself.

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

Differencesin SQA Standards For Librariesand End-User Applications

Portability, configuration and installation standards are more stringent for libraries
than applications because users care about how alibrary is compiled and installed. For
example, users of alibrary care whether it was compiled for 32 or 64 bit word size, with
debugging or not, optimized or not, with support for parallel execution or not, with
support for static or dynamic linking, etc.

Furthermore, auser’sinterest in how alibrary is compiled and installed extends,
recursively, to any other libraries upon which the given library depends. Often, there can
be multiple versions of an “other” library and even multiple implementations. For
example, there are multiple versions of MPICH, the Argonne portable implementation of
the MPI specification. Nonetheless, MPICH isjust one implementation of the MPI
gpecification. There are othersincluding LAM, ChaMPlon and vendor specific
implementations such as IBM’s or SGI’s. Obviously, users care about which of version
and/or implementation of an “other” library the given library is compiled with.

To assure consistency in name mangling, exception handling and long-jumping, when
multiple compilers are available users care which compiler is used. Even with agiven
compiler, say gcc, there are often multiple versions available causing user’s to care about
which version is used. In cases where compilers support exotic code-generation options!,
users care which options are used and how.

If for all of the aforementioned options just two choices were available, the example
cases we' ve enumerated here, which are not exhaustive, demonstrate 256 different ways
to build and install asingle library on agiven platform! We call each a configuration.
SQA standards for libraries involve testing, installing and supporting avery large number
of configurations.

To make matters worse, mistakes in configuration are not always detectabl e at
compile-time. For example, how would anyone know that an installed library that was
said to be compiled with optimization was accidentally compiled without? Other than
lower performance, there would be no indication that something was wrong. Over many,
many executions of the client, this might put a substantial and unnecessary drain on
computing resources. In other cases, the consequences and cost of a configuration mistake
can be more dramatic. For example, in the case where both the client and the library, say
| i bCool , both depend on another library, say 1i bQx her, if the client and 1 i bCool were
compiled with different versions of 1 i bt her , the client may fail in unexplainable ways
triggering an unnecessary debugging effort.

Another difference between SQA standards for libraries an applicationsis that
libraries are entirely unforgiving of application programming interface (API) changes.
When the API of alibrary is changed, clients can cease to function! On the other hand,
when the interface of an application is changed, the graphical user interface (GUI) for

1. These are options that effect link- and/or run-time compatibility of compilation units.

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

example, users may complain about the change but the product will continue to function.

Next, when critical bugs are found and fixed in alibrary, often they must be fixed in
multiple older versions of the library and new releases of these older versions must be
made. The sameis not true of applications. Why? Libraries are often used in applications
with unyielding stability requirements where reproducibility of results over a periods of
yearsiscritical. Such applications cannot tolerate having to change to a newer version of a
library just to obtain a critical bug fix to the version they are using. Consequently, it
becomes necessary for library developers to apply bug fixesto older versions and re-
release the bug-fixed older versions. The same cannot be said for applications.

Asafinal differencein SQA standards for libraries and applications, documentation
for libraries is much more technically rich and complex than it is for applications.
Furthermore, such documentation is often essential for proper use of the product. By
contrast, akey goal of the design of aGUI for an application isto make the interface of an
application as intuitive and free from the need for documentation as possible.

In this section, we have outlined many of the important differencesin SQA standards
for libraries and applications. In the next few sections, we introduce and describe several
SQE practicesfor smart libraries under four broad categories, progenitor practices or those
upon which all other practices depend, those that enable clients to deal with change, those
that enable clients to detect and diagnose anomalies and, lastly, those aimed at producing
guality documentation. In the next to last section we describe several miscellaneous
practices.

We include example code for afew of the key practices. Likewise, we' ve chosen not
to discuss practices that we considered to already be in common use such as the use of a
revision control system, like CVS, or a configuration tool like Autoconf. We conclude
with a narrative of some real-world experiences and how smart libraries have
demonstrated big advantages.

Progenitor Practices: Key Practices Upon Which All Others Depend

In this section we describe those practices that are essential in order to implement
many of the other practices we describe. We call these Progenitor Practices.

Practice 1. Give a meaningful version number to each release of the library

Libraries are often devel oped and released in increments. Features are added. Bugs are
found and fixed. API’s are changed and new releases are made. Typically, alibrary is
never really done. It continues to undergo development and evolve even as clients use it.
This creates a need for users to be able to identify and distinguish between various
versions. We call such identification a Version Number and the means by which aversion
number is assigned to arelease a Version Numbering Scheme.

A simple way to assign a version number is just to increment a counter each time a
release of the library is made to customers. Or, one could use the date of the release asa

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

version number. For aridiculous example, one could compute a checksum over all the
source files that comprise the library and assign that as the version number. However,
none of these version numbering schemesisvery useful. Certainly, each scheme permitsa
user to distinguish one version from another. But, that is about all they are good for with
the exception that the counter and date schemes also permit a user to distinguish a newer
release from an older one. The checksum scheme doesn’t even permit that.

The reason for mentioning these not-so-useful schemesisto underscore the
importance of having a version numbering scheme that lends meaning to the version
number. A version number can be given meaning by defining for users how changesin the
version number relate to events in the software development life-cycle of the library. For
example, one digit in the version number could be set aside to indicate bug-fix changes
only. That way, if version numbers from different releases match in all other respects
except for thisdigit, auser could know if two versions are link-time compatible. However,
thisisjust one example of giving a meaningful version number to each release.

A smart library utilizes a version numbering scheme that gives meaning to the version
number by relating events in the software development life-cycle of the library that are
relevant to users to changes in the version number.

Practice 2: Require clientsto call functionsto begin/end interaction with thelibrary

Libraries can contain alarge number of API functions. For example, the MPI library
contains over 100 different API functions. If the library is designed such that thereis no
API function that is culled out and required to be the first function that must be called
before any other function in the library can be called, then any of the API functionsin the
library might wind up being the first the client makes during actual execution.

In other words, without requiring clients to call functions that begin and end
interaction with alibrary, library developers have no way of knowing or predicting the
path by which clients will enter their library nor when aclient isfinished using it. Thisis
problematic for managing global settings and resources. It is also problematic for several
of the practices we discuss in later sectionsin this paper.

An example of this practice can be found in the MPI library. The MPI library requires
that the client first call MPI _I ni t () before calling any other function in the library and
alsoto call MPI _Fi nal i ze() when the client isdone using thelibrary.

A smart library requires clientsto call functions that begin and end interaction with the
library. A smart library aso includes functions to query if the library has been initialized
or finalized.

Practice 3: Design all public functions to invoke common entrance/exit procedures

When aclient makes a call into one of itslibraries, the client is temporarily
transferring control of execution to the library so that the library can perform some service
on behalf of the client. Thistransfer of control isasignificant event in the execution of the

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

client. It make sense that the process by which the library takes control from the client and
later returns control to the client be managed formally and be consistent across the entire
API of thelibrary.

By managing this transfer of control effectively, there are many services alibrary can
offer. For example, to enable a client to gather some simple performance data, the library
might record the time of entrance and exit to each function. Or, on entrance the library
might check that is has been initialized with a prior call to itsinitialization function
(Practice 2). Or, the library might record the name of the function so that it can be
included in any warning or error messages printed by the library. Another useful
application of this practice might be to provide API call tracing. On entrance, each API
function can print its name and maybe calling arguments. On exit, it can print the fact that
it has successfully returned from the function. Another possibility might be to provide
access control for a multi-threaded implementation. Y et another possible application of
this practice isto provide an integration point for external instrumentation tools such as
Vampir or Pablo.

The point in describing some of these possibilitiesisthat they can be supported only if
every function has been designed from the start with thisin mind by adding common
entrance and exit procedures. An exampleisillustrated in Fig. 2.

int saf _declare_set (SAF_Db db, const char *nane, int topo_dim

{
int reval = SAF_ERROR;

SAF_ENTER(saf _decl are_set, SAF_PRECONDI TI ON_ERROCR) ;
/* do the work here */
SAF_LEAVE(retval);

Fig. 2. Example code for common entrance/exit procedures

Our experience has been that the macro pre-processor offers the greatest flexibility in
controlling the entrance and exit behavior of each function. That is, entrance and exit
procedures have their greatest utility when they are expressed as macro’d code-blocks. A
consequence of this practice is that early returns from functions cannot be allowed to
bypass the normal exit procedures. This can lead to a design where every function exits
through the bottom often by using much frowned upon but ideally suited for this purpose
got o statements.

Practice 4: Put all public symbols of the API in their own namespace

In Fig. 1, we show 8 different libraries being linked together into the Ale3d
application. Thisisjust asubset of all the libraries Ale3d can be linked with. If each
library is developed independently, how can we make sure that public symbols defined in
one library do not have the same name as symbols defined in another?

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

The solution isto put al public symbols of the API in their own namespace. If the
client iswritten in C++, thisisrelatively easy for the client to do using the namespace
features of C++. In general, however, this cannot be achieved by the client alone. Each
library must have been implemented with thisissue in mind.

The solution isto prepend a 2,3 or 4 character acronym to every public symbol in the
API. Most developers try to adhere to the this practice. However, almost as many neglect
to consider all possible symbols and wind up missing some. Devel opers must remember to
consider functions and all global data structures even if those data structures are not
directly touched by the client. It includes type definitions, pre-processor macros and
enums. It also includes the names of header (.h) files, aswell as environment variables
and/or command-line arguments, if any, that the library interprets. For example, the HDF5
library defines these symboals...

« H5Fopen - function to open afile

« H5ST_NATI VE_I NT - constant for type of native integer

« H5G st at _t - datatype for stat of an HDF5 object

« H5_VERS_MAJOR - macro for major version number

« H5_DEBUG - environment variable controlling debugging/tracing

In asmart library, every public symbol has prepended to it a 2,3 or 4 character
moniker to help keep its symbols from colliding with those from other libraries.

Practice 5: Summary of progenitor practices

In this section, we have described four practices that are essential in order to
implement many of the other practices described here. In the next section, we will
describe practices aimed at enabling clients to deal with changein alibrary.

Practicesthat Enable Clients (and Users) to Deal With Change

Aswe mentioned previously, alibrary is never realy done. A library continues to
undergo development and evolve even as clients use it. Enabling clients to deal with
subsequent changes is one of the more important services a smart library provides. In this
section, we discuss a variety of SQE practices aimed and providing this kind of service.

Practice 6: Give meaning to the ver sion number in termsof changes impact on client
Ideally, alibrary can be improved in arbitrary ways without negatively impacting any
applications that depend on it and, for 1/O libraries, without negatively impacting any data
files generated by it. Nonetheless, thisisn’t always practical or desirablel. When alibrary
is changed, the resulting impact on an application can be minor to severe. The application
may simply need to be re-bui It? with the newer library. For more substantial changes, new
library calls may need to be added to the client or existing calls re-written®. In the most

1. For example, when an application devel oper works around a bug in alibrary, once anew version of the
library with the bug fixed is available, the work around should be removed from the application.
2. By “re-built” we mean either are-link or are-compile and re-link.

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

severe situations, whole algorithms may have to be re-thought. In a nutshell, to use a new
version of alibrary the user may have to re-build, re-type or re-think portions of the

application.

A smart library employs a carefully designed version numbering scheme that helps
users make an initial assessment of what isinvolved in moving to a newer version of a
library. A scheme used by SAF is composed of 3 digits, A.B.C, where A isthe major digit,
B isthe minor digit and C is the patch digit. The digits are given meaning by defining the
events in the software development life-cycle that trigger a change in a particular digit.
Thisis summarized in the table below.

Table 1: Meanings for various digitsin a version number

A

B

C

Major Digit

Minor Digit?

Patch Digit

In the worst case,
changes in this digit
can mean...

Everything Minor means &...
Major API changes

Major feature enhancements
Major file format changes®

Everything Patch means &....
Minor API changes

Minor feature enhancements
Minor file format c:hangeﬁb
Performance improvements®

Documentation updates
Bug fixes

API additions

Performance improvements?

impact on application
when digit changes

re-type <= impact <= re-think

rebuild <= impact <= re-type

none <= impact <= rebuild

months weeks

typical frequency® years

a. Another common practice is an odd/even minor digit to indicate devel opment/production rel eases.

b. File format issues are specific to 1/O libraries. d. High-impact/low-cost. e. Lower-impact/higher-cost.

¢. Our experience has been that increment of the release number is often triggered at regular intervals by rou-
tine bug-fix work while increment of minor and major number is triggered as planned devel opment activi-
ties are completed.

Given this version numbering scheme, it isimportant to note that a difference in minor
and/or major digitsis asufficient but not always necessary indicator of link-time
incompatibilities.

Practice 7: Provide a version number consistency check between client and library

The client and library are compiled independently. As versions of alibrary get
released and installed, over time various version may exist on a given system. It can
become easy to accidentally compile with the header files for one version but link to the
object filesfor adifferent version. This problem is particularly prevalent for clients that
depend directly and indirectly on one library through one or more other libraries. In this
situation, although the client may be compiling and linking with the correct header and object
files, it may be that one of the other libraries the client is linking with expects a different

3. For libraries written in languages that support polymorphism (e.g. C++ or Java), changesin existing
API callswhich result in a different function signature are often gracefully handled by the compiler.

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

version of the given library.

A smart library checks consistency in the version number of the header file(s) aclient
is compiled with and the object filesit is later linked to. There are run-time and link-time
approaches to performing this check.

To perform alink-time check, the approach is to define an external symbol in the
header file(s) that has a high probability of being referenced by a client. The external
reference to this symbol is resolved only when the client is linked with the correct version
of the abject files. For example, for version 1.2.4 of the MPI library, one could define
MPI I nit() tobeamacrolike so

#define MPI _Init(Argc, Argv) (MPlI _Version_1 2 4++,npi _init(Argc, Argv))

wherenpi _i ni t () isthereal implementation of MPI _I ni t (). Sinceal MPI clients
must call MPI _I ni t (), each time oneis compiled, it will make a reference to the symbol,
MPI _Version_1_2_ 4. Whenaclient islinked to the object filesfor the library, if they do
not resolve the reference to this symbol, the linker will issue afatal error to the effect that
“MPI _Version_1_2_4 isan unresolved symbol”. The symbol name is appropriately
chosen so that when it is printed in the linker error message, it will indicate the version
number of the library the client is expecting to be linked with.

To perform the check at run-time rather than link-time, instead of defining aversion
specific compile-time symbol, one can pass version information in the initialization call
like so

#define MPI _Init(Argc, Argv) npi _init(Argc, Argv, Maj, M n, Pat)

The implementation of npi _i ni t () will then compare the version string with what it
thinks is the correct value and either permit the client to proceed or abort with an
appropriate error message. The next practice explains why a run-time approach is the
preferred approach.

Practice 8: Permit usersto overridethe version check

Recall that differencesin the version number are a sufficient but not always necessary
indicator of version incompatibilities. The fact is several different versions may be
compatible in spite of differences in the minor and/or major version digits. Even if two
version are not wholly APl compatible, they may be for the subset of API callsfor agiven
application. If strict version number matching is used, (Practice 7), the client may be
forced to re-compile when it is not necessary.

A smart library provides an option to override the version check via an environment
variable. For example, in versions of HDF5 after 1.4.2, if the environment variable,
HDF5_DI SABLE_VERSI ON_CHECK, is defined, HDF5 will ignore version number
mismatches. Of course, library developers need make no promise that things will operate
correctly or to provide support if and when they do not.

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

Practice 9: Automatically build into the library its version compatibility history

A better solution to the problem of a sufficient but not always necessary version check
isfor the library to automatically determine and maintain knowledge of its version
compatibility history and to use this knowledge when performing its version check
(Practice 7). Note that this practice depends on arelatively complete and orthogonal test
suite which is also updated to test new features as they are added.

In the development of a smart library, the test suite is used to probe version
compatibility. Each time the minor and/or magjor version digits change, the test suiteis
compiled and run in the following ways

a) compile old test suite with old lib header files and link to new lib object files
b) compile new test suite with new lib header files and link to old object files

Case a) simulates an old client linking with the new library while case b) ssimulates a
new client linking with the old library. Assuming an orthogonal test suite, tests which
exercise new functionality are expected to fail in the link-phase in case b. These are
excluded from the new/old compatibility decision because we can safely assume the linker
will alwaysfail for any new client using features of the new library but attempting to link
toanold library.

For all other situations, failures may occur at link-time or at run-time. Nonethel ess,
anything less than a completely successfully run test suite is deemed afailure with the
caveat that tests expected to fail in case b) are excluded. Pass/fail results for each case are
then accumulated and maintained both in the header file and the object file for the library.
struct _verConpatlnfo {

int oldmaj, oldnmn, newraj, newm n, conpat;
} SAF_Ver Conpatlnfo_t;

SAF_Ver Conpat I nfo_t SAF _VerConpat[] = {

]
{1, 0, 1, 1, 1}, // 1.0 & 1.1 K
{1, 1, 1, 2, 0}, // 1.1 & 1.2 NOT COVPATI BLE
{1, 2, 1, 3, 1}};// 1.2 & 1.3 K

The reason for encoding this information into both the header file and an object
module within the library is so that we can always guarantee the newest information is
available in any given combination of old and new headers and object files.

Practice 10: Provide compile-time symbols client can query for version infor mation

As new functions are added to alibrary, creating a client that depends on those
functions means that said client cannot operate with older versions of the library. This
isn't always desirable. To make a client that can be correctly compiled with different
versions of the library, it is necessary for the client to conditionally compile code blocks
that use newer API functions. However, the client cannot achieve this by itself. It needs
help from the library.

A smart library provides compile time constants for its clients to query the version

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

number. For example,

#tdefine H5_V_MAJOR 1
#define H5_V_M NOR 4
#defi ne H5_V_PATCH 2

#define H5_V_GE(A B, O)\
((H5_V_MAJOR==A && H5_V_M NOR==B && H5_V_PATCH>=C) || \
(H5_V_MAJOR==A && H5_V_M NOR>=B) || \
(H5_V_MAJOR>=A)) \

Suppose anew API function, H5Pf oo_bar () was added to the API in version 1.6.3 of
thelibrary. A client wishing to use this function but also to be backwards compatible with
older versions of the HDF5 library, would be coded like so
#if H5_V_GE(1, 6, 3)

H5Pfoo_bar(); /* do it the new way */
#el se

H5Pgor f o() ; /* do it the old way */
#endi f

A consequence of this practice is areguirement that the compile-time representation
for the version number support not only the == operator but also the >= and <= operators.
A string representation for compile-time version information is not acceptable.

Practice 11: Embed string-oriented version information in thelibrary and its clients

Given an application executable file that uses alibrary, how can users learn which
version of the library the executable uses? If library developers left this up to application
developers, then probably very few applications, if any, would provide a means for end-
users to obtain information about which version of agiven library an application uses.
What can library developers due to guarentee users can obtain library version information
from an application?

The answer isthat library developers can embed a string-oriented representation of the
version number of the library in any client that uses the library. When thisis done,
something likethest ri ngs command on Unix can be used to retrieve version information
directly from object and executable files.

This can be easily achieved by augmenting the method (marco) used to initialize the
library with areference to a string representation of the version number such as...

#define MPI _Init(Argc, Argv) \
{static char *junk="MPI |ibrary version” \
#Maj “.” #Mn “." #Mn ; } ; \
npi _init(Argc, Argv, Maj, M n, Pat)

In this example we use the C pre-processor’ s # operator which turns areferenceto a
macro into the string representation of the macro along with the C compiler’s ability to
catenate literal string tokens together into asingle, large string.

With this expression for MPI _I ni t, any client that uses MPI will wind up having

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

embedded in it astring of theform“MPI 1ibrary version A B.C whereA,BandC
are the magjor, minor and patch version number digits. By using a unix command such as

strings <file> | grep ‘MPlI library version’

where <f i | e> isan executable or object file, a user con obtain the version of the MPI
library an application executable or object fileis actually compiled to use. On aWindow’s
system, asimilar operation is possible using the Window’ s search tools.

A smart library embeds a string-oriented representation for its version number into any
client the library is compiled with.

Practice 12: Wher e possible, pass only language-built-in data-types through the API

The significance of the API of alibrary isthat it represents the boundary between
pieces of software (e.g. the library and its clients) that are compiled independently from
one another. Any data types that flow through this boundary are shared between the
library and the client. Because the client and the library are compiled independently, it is
possible for each to have a different interpretation of these shared types. For example,
suppose alibrary had the following member function inits API for initializing the library

typedef struct {char c; int i} props_t;
liblnit(props_t props);

In this example, we have chosen the type pr ops_t to be such that alignment of thei
data member will necessitate 3 pad bytes following the ¢ data member. If the library is
compiled using default compiler options but some client is later compiled using options
that allow these pad bytes to be compressed out, the library and the client won’t agree on
their respective interpretation of this shared type.

The kinds of data-types that are used in the API have a direct impact on the likelihood
of thisoccurring. If the API isrestricted to use only the built-in data-types of the
implementation language, then the likelihood of the library and client being compiled in
such away asto have differing interpretations of the typesis minimized.

When types more abstract than those built-in to the implementation language are
needed, a smart library uses only pointers to these types and provides methodsin the
library to alocate, manipulate and free them. In other words, to use the props_t type,
above, a better practiceis
typedef props_t* props_p;
props_p |ibCreateProps();
|'i bFreeProps(props_p props);

i bPropsSet C(props_p, char c);
i bPropsSetl (props_p, int i);
liblnit(props_p props);

In thisway, it becomes impossible for the client to allocate atype, in this case a
props_t type, thelibrary isresponsible for defining. The only thing the client can do isto

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

obtain a pointer to the type through appropriate creation/destruction functions and then
manipulate its contents through appropriate accessor functions. The only data-type that
both the client and library share is the pointer to the type.

Practice 13: Provide data-type size and alignment consistency checks

Many compilers provide a variety of code generation options many of which, if not
consistent between client and library, can cause incompatibilitiesin APl datatype sizes
and alignments. Worse, linkers do not necessarily catch these incompatibilities and refuse
to produce an executable. The problem may only manifest itself at run-time.

A smart library performs consistency checks on API types. The approach isto include
asmall static array of intsin the public header file of the library whose contents are
computed at both the compile time of the library and the client. At runtime, just asthe
library checksits version number, (Practice 7), it can also check this array for differences.
In the example below, thisinformation is encoded into SAF_Types[] .

/* datatypes used in APl */
typedef struct { int tag; char bits } Foo_t;
typedef struct { double speed; int id; } Bar_t;

struct { char a; Foo_t b; } w thFoo;
struct { char a; Bar_t b; } wthBar;
#def i ne ALI GN(A) ((int) ((char*)& A b)-(char*)&A))
static const int SAF_Types[] = {
si zeof (Foo_t), ALIGN(w t hFoo),
si zeof (Bar _t), ALIGN(wi thBar)

}s

Practice 14: In languages that don’t support polymorphism, fake it

When alibrary isimplemented in alanguage that supports polymorphism, API
changes are less of an issue because the compiler recognizes different versions of the same
function based on the function signature. This enables library developers to maintain
multiple different APIsfor a given function without necessarily impacting any clients.
However, not all languages support polymorphism.

When devel oped in alanguage that does not support polymorphism, the API of asmart
library is designed in such away as to mimic polymorphism. An approach used in HDF5
isto include asingle catch-all argument representing “any additional arguments.” This
catch-all argument is areferenceto alist of parameter/value pairs called a property list.
For example, in HDF5' s API function to create a dataset
hid_t H5Dcreate(hid_t loc, char *name, hid_t type, hid_t space,

hid t plist);

the pl i st isareference to adata structure that represents alist of additional
arguments. As HDF5 evolves and new parameters are needed to affect the creation of
datasets, functions to manipulate the contents of pl i st are added. For example, after

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

HDF5 was designed, the concept of afill value was added to define values in the dataset
that were not explicitly written by the client. A new function was added like so...

herr_t H5Pset fill _value(hid_ t plist, hid_t type, void *val ue);

The key word in the preceding sentence isadded. By including the pl i st argument as
astand-in for any additional argumentsin the initial design, the API for creating datasets
can be changed without breaking version compatibility for existing clients.

Practice 15: Design API changesto break the client’s compile

Inevitably, no matter how much time one spendsin design, it may still become
necessary to change an API that clients are already using. When such changes add or
remove arguments from calls, the calls that need to be changed are easily detected and
noted by the compiler where they can be corrected by the user.

However, when such changes change the data types flowing between client and
library, the compiler won’t necessarily detect them as outright errors. In some cases, it
may not even generate warnings but could lead to various anomal ous behavior during run-
time and be difficult to diagnose.

In asmart library, as API changes are made, they are made in such away asto always
break the compilation phase of aclient.

A great way to force acompile-time error is simply to change the name of a public
symbol the client calls and eliminate the old name. This makes the changes easy to find
and avoids unpredictable run-time behavior that may take hours in a debugger to track
down.

Alternatively, the old name can be maintained in a deprecated state for afew
successive releases of the library. When user’s reference a deprecated symbol, a smart
library generates a warning message -- which can be disabled -- to inform users of the
eventual total removal of the symbol from the library.

Practice 16: M ake wor k-ar ounds conditionally compiled and off by default.

Often, one library uses other libraries. When bugs are encountered in other libraries,
they are often handled by work-arounds. A work-around isablock of code that represents
an alternative way of achieving the same end. Of coursg, if there is no good reason to
prefer one approach over another, then one cannot be considered a work-around. So, by
definition, awork-around is an inferior approach. Eventualy, it should be removed from
the code and replaced with the preferred approach. Unfortunately, if work-arounds are not
managed carefully, it is easy to forget about them among tens of thousands of lines of
code. For this reason, work-arounds must be managed carefully.

For example, early versions of MPICH on Sun, Solaris had a bug in which
MPI _Type_struct () would compute the wrong size for its data type. The code segment
below illustrates a work-around for defining the f oo_t datatypein MPICH and returning

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

ahandleto it in npi Type.

typedef struct _foo_ t { float f; char c; } foo_t;
MPI _Dat at ype npi Type;

#i fdef SAF_WA npi _type_struct
/1 the work-around
MPI _Type_conti guous(si zeof (foo_t), MPI_CHAR, &npi Type);

#el se
/1 the preferred approach
i nt lens[] = {1, 1};
MPI _Ai nt disps[] = {0, sizeof(float)};

MPI _Dat at ype types][] {MPI _FLOAT, MPI _CHAR};

MPlI _Type_struct (2, |lens, disps, types, &nmpi Type);
#endi f

MPI _Type_conmmi t (nmpi Type);

Thecodeinthe#i f def clauseis sub-optimal because the resulting type is opaque to
MPICH. MPICH won't know that the type isreally a struct comprised of afloat and char
data member. This could lead to problems in a heterogeneous computing environment
where MPICH may need to convert between different machine’ s floating point
representations when passing messages involving the f oo_t datatype. Thus, the #el se
clauseisthe preferred approach. However, it relies upon acall to MPI _Type_st r uct
which has a known bug.

Inasmart library, work-around code is always conditionally compiled. Furthermore, it
isturned off by default. This necessitates having to always pass conditional compilation
symbolsto the compiler to build the library with the work-arounds. Thus, the need for a
given work-around is always “in your face” when building and installing the library and it
is harder to overlook. In the example code above, to compile the code with the work-
around, it is necessary to pass ‘-DSAF_WA_npi _t ype_struct’ to the compiler. A good
practice in makefilesisto do the following...

CWAFLAGS="- DSAF_WA npi _type_struct ...”"
CFLAGS=" $CFLAGS $CWAFLAGS”

Practice 17: Createteststhat independently test the need for work-arounds

Eventually, work-arounds should be removed from alibrary. A suitably designed test
suite can automatically inform devel opers when a given work-around is no longer
necessary.

In the development of asmart library, at the same time awork-around isintroduced, a
test is added to independently test the need for the work-around. By “independently”, we
mean the test is designed in such away that its outcome is not dependent on the presence
(or absence) of other work-arounds.

Aslong as the work-around is required, the test will pass only when the specific work-
around it testsis conditionally compiled into the library and fail otherwise.

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

The indication that the work-around is no longer necessary comes when the library is
compiled without the work-around and the test still passes. Consequently, as updates are
made to other libraries, asmart library is periodically compiled and tested without its
work-arounds to find out which work-arounds are no longer needed.

Practice 18: Provide a meansfor usersto easily identify installed configurations

In the introduction we discussed a number of configuration issues to be concerned
with. On any given platform, multiple configurations satisfying a variety of different
users’ needs may exist. This means, for example, there might be several different
| i bhdf 5. a libraries for an HDF5 client to link to. How are users to distinguish between
them and/or find a configuration they want?

A smart library uses one of a couple of different approaches to help usersidentify
various configurations. The simplest uses the pathname of the . a file to identify key
configuration options. For example, the following | i bsaf . a file

/usr/ gapps/saf/saf-1.2.0/1RI X64/ gcc-2. 96/ def aul t/ debug/ shared/|i bsaf. a

represents version 1.2.0 of the SAF library, compiled on SGI, IRIX 6.4 operating
system, with version 2.96 of gcc, using default code generation options, with debugging
support and with dynamic linking support (e.g. shared library).

In addition, becauseit is not practical to capture all the configuration information in
theinstallation directory’ s pathname, another practice a smart library employsisto create
a human readable text file in the directory where the object modules are placed which
describes every detail of the configuration. For example, all versions of HDF5 after 1.2.0
include afilecalled i bhdf 5. set ti ngs in the same directory asthel i bhdf 5. a (or
| i bhdf 5. so) which contains all the details about how the library was compiled and
installed including the path to the compiler, al the flags to the compiler, flagsto the
library, etc.

One issue some users have with the preceding scheme is the long pathnames that
result. So, an alternativeisto flatten out everything after the version number. For example,
inthe directory /usr/ gapps/ saf/saf-1.2. 0, wewould have a set of arbitrarily named
.afiles, say saf _eaRT1b. a, saf _ghJK2. a, and saf _bbbU7. a. Since thereis no way for a
user to determine which . a file corresponds to which configuration, this approach also
requires a shell-script utility which accepts the desired configuration options as input and
then returns the appropriate file name asin...

% /usr/ gapps/saf/saf-1.2.2/getconfig IRl X64 gcc-2.96 debug shared
/usr/ gapps/visit/saf/saf-1.2.2/saf _ghJK2. a

The get conf i g script can be controlled such that either an exact match or the closest
link-compatible match is returned. A user can then do the following in his or her makefile

SAFLI B=*/ usr/ gapps/ saf/saf-1. 2.2/ getconfig IRl X64 gcc-2.96 debug shared
SAFI NC=/ usr/ gapps/ saf / saf - 1. 2. 2/ i ncl ude

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

Summary of Practices Aimed at Enabling Clientsto Deal with Change

In the preceding section, we described severa specific practices aimed at enabling
clients to deal with change. The practices are primarily aimed at keeping clients from
making simple mistakes in the presence of change. In the next section, we discuss a
number of practices aimed at helping clients to detect and diagnose anomal ous behavior.

Practicesthat Help Usersto Detect and Diagnose Anomalies

In this section, we describe practices aimed at hel ping users find and correct
anomalies. We use the term anomaly to describe any condition that prevents proper
execution. An anomaly may be the result of lack of resources, memory or disk-space for
example, improper calling usage on the part of the client, an outright bug in the library, or
afailure of some other software component on which the library depends. In our
definition, “any” really does mean any condition preventing proper execution.

A smart library includes extra code the sole purpose of which is simply to detect
commonly encountered anomalies. We call this anomaly detection code. On the one hand,
anomaly detection code can degrade performance and increase the memory footprint of
the library. On the other hand, it can provide valuable diagnostics to a user.

In this section we describe a variety of practices aimed detecting anomalies and
providing detailed information to facilitate their diagnosis. Note that if alibrary does not
catch an anomalous condition, often the operating system probably will, typically in the
form of some catastrophic error such as a segmentation violation or bus error. Thisis
called an un-caught anomaly. However, the point at which the operating system catches
such a problem is often logically unrelated to the root cause. Worse, the operating system
provides no information to aid in diagnosing the root cause.

Practice 19: Provide at least two quality of service options; debug and production

Many of the practices discussed in this section depend on the user’ s ability to obtain
various qualities of service from agiven library. In asmart library, at |east two are
essential. Oneisto provide the user with maximum devel opment support while s’heis
developing the client. The other is to provide the user with production-level performance
once development is completed. We call these debug and production configurations
respectively. A smart library provides at |east these two qualities of service.

Note that in both a debug and a production configuration, the library is compiled such
that anomaly detection code is also compiled. In adebug configuration, anomaly detection
code is enabled by default and a user has to explicitly disable it. In a production
configuration, anomaly detection is disabled by default and a user has to explicitly enable
it. (see Practice 20). The key point in both configurationsis that anomaly detection codeis
compiled and availablein thelibrary. Between adebug and production configuration, only
the default state is different.

Additionally, a debug configuration is compiled with the - g option. Thisisn’t because

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

we expect users of our library to debug it. Instead, it is because users are often more
successful debugging their own client code when they are also able to seewhat is
happening in the library. Nonetheless, an added benefit is that power users are sometimes
able to find and subsequently work around bugs in the library. On the other hand, a
production configuration is compiled without the - g option and with the - o3 (or whatever
level of optimization the code permits) option.

Finally, although a production configuration is usually sufficiently optimized, it is
often useful to provide athird quality of service option in which thelibrary is compiled so
asto minimize its memory footprint aswell. In this case, the library is compiled asin a
production configuration except without any anomaly detection code. Such a
configuration is also called an optimal configuration.

Since aspects of a given quality of service are often determined at compile time, this
practice usually means that multiple different versions of alibrary need to be compiled
and installed on a given platform (Practice 18).

Practice 20: M ake anomaly detection code blocks run-time switchable

The user doesn’'t necessarily want the library performing anomaly detection all the
time. Users need to be able to easily disable anomaly detection. On the other hand,
whenever users encounter an un-caught anomaly, they often like be able to easily re-run
the client with anomaly detection enabled to get more information about where things are
going wrong.

The keyword in the preceding paragraph is “easily”. If the presence of anomaly
detection support in agiven library is determined solely at compile time, aclient needs to
be re-linked, maybe even re-compiled and re-linked, in order to enable or disableit.

In asmart library, anomaly detection is switchable at run-time. Skeptics of this
approach might argue that the library still suffers from degraded performance because it
winds up doing some work for each check. For example, the library has to examine a
boolean value for true or false to determine if it indeed should perform a check or not.
However, agood design can avoid even thistiny run-time cost. For example, consider a
simple library to create and write and read arrays.

Array (*CreateArray)(const char *nane, int ndinms, const int *dins);
int (*WiteArray) (Array *a);
Array (*ReadArray) (const char *nane);

Array createArray(const char *nane, int ndins, const int *dins)
{ /* pre-check work */

_createArray(nane, ndins, dims);

/* post work */ }

writeArray(Array *a)

{ /* pre work */
_witeArray(fa);

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004
/* post work */ }

Array readArray(const char *nane)
{ /* pre work */
_readArray(nane);
/* post work */ }

Array_Init(bool useChecks)

{
i f (useChecks) {

CreateArray = createArray;
WiteArray = witeArray;
ReadArray = readArray;

} else {
CreateArray = _createArray;
WiteArray = witeArray;
ReadArray = _readArray;

Each function in the API isimplemented in two pieces. An outer piece that does some
pre- and post-anomaly detection and aninner piece that doesthe real work but no anomaly
detection. By designing the public API to be a set of programmable function pointers,
which are set up in the call to initialize the library, Array_I ni t (), even the run-time cost
of deciding whether to perform any check or not can be eliminated.

By designing a smart library to support run-time switching of anomaly detection,
whenever aclient does encounter an un-caught anomaly, the user can re-run the client
with the checks turned on to help narrow in on the cause. In an approach where anomaly
checks are compiled out, the client needs to be re-linked with a version of the library in
which the checks were not compiled out. This takestime. In addition, it can cause
relocation of code and can wind up hiding the anomaly.

Practice 21: Accept run-time switchesfor anomaly detection directly by thelibrary

How can the end-user of an application control the behavior of one of itsinternal
libraries at run-time? If the only path into the library to turn anomaly detection on or off is
through function callsinto the library, then the client must be designed to take
responsibility for accepting user input at run-time and calling the appropriate functionsin
thelibrary. If the developer of the client failsto designit in thisway, then thereis no hope
for the user to control the behavior of the library later on at run-time. Consequently, the
library must be able to accept input directly from the user regardless of how theclient is
ultimately designed.

A smart library is designed to accept input directly from the user for its run-time
control parameters. A library can accept user input via command-line arguments,
environment variables or some kind of a preferences or configuration file. For example,
MPI is designed to accept arguments from the command-line. The call to MPI _I ni t ()

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

takes ar gc and ar gv asits arguments. Nonetheless, there is no way to enforce that the
caller passthe actual ar gc/ ar gv of the command-lineto mai n() . As another example, the
SAF library uses an environment variable, SAF_ASSERT_DI SABLE to control disablement
of assertions. Our experience has been that environment variables work best.

Practice 22: Make Anomaly detection selectively controllable

The application programming interface of alibrary is often divided into distinct
sections for different categories of operations. For example, MPI is broadly divided into
point-to-point and collective communication routines. A user might not want to have to
take the performance hit for anomaly detection in the collective routines if ’heisin the
midst of debugging a problem that is confined to her client’ s use of the point-to-point
routines. For this reason, the user needs to ability to selectively control how and where the
library performs anomaly detection.

A smart library is designed to permit selective control of anomaly detection. There are
avariety of waysto classify anomaly checksin alibrary to facilitate selective control. As
the previous paragraph suggests, oneisto classify according to distinct sections of the
API. Another isto classify according to the amount of work a check takes.

For example, in SAF, anomaly checks are classified as being either pre-, post- or
invariant-condition checks (Practice 23) as well as being either high, medium, low or no
cost. Environment variables, such as SAF_ PRECOND_DI SABLE, then control the cost
threshold for a given class of checks. For example, setting
SAF_PRECOND DI SABLE=medi umin the environment of a SAF client has the effect of
turning off all pre-condition checkswith medium or higher cost. A user can then turn on or
off costs above or below a certain cost threshold permitting the user to trade-off
performance and robustness of clients that use the SAF library.

Practice 23: Handle Design-by-Contract like all other anomaly detection

It is worth mentioning the Design by Contract programming paradigm and culling it
out separately here to emphasize an important point about Practice 20. That is that all
anomaly checks, even those having to do with the pre-, post- and invariant conditions of a
Design by Contract (DbC) programming paradigm should be run-time switchable. In a
production configuration (Practice 19), they should be off by default but nevertheless
available to be switched on if the need arises. In a debug configuration, they should be on
by default but it should also be possible to switch them off.

Although leaving pre-, post- and invariant condition checks compiled into a
production library fliesin the face of DbC theory, our experience has been that just
because a client meets the conditions of a contract in one execution doesn’t necessarily
mean it will do so in the next. The data that flows between client and library, the contract
that is, may be comprised of end-user input or data read from afile on disk which can
surely vary from run to run. Or, it may be the result of a sequence of interactions between
client and library which aso may vary from run to run. Next, scientific computing

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

applications are complex enough that it israrely possible to exercise al possible code
pathsin testing. It isimpractical to confirm that over all possible code paths, the client
meets the conditions of a contract with alibrary it uses. Finally, as new versions of a
library are released, it may include new contractual conditions that were either
unnecessary or overlooked in previous releases. Thus, the contract the client must meet
can change.

Asaresult, in asmart library even the pre-, post- and invariant conditions of a DbC
programming paradigm are run-time switchable. In fact, they are treated uniformly with
all other anomaly detection checks the library does. In a smart library, there is nothing
really special about checks associated with a DbC programming paradigm.

Practice 24: Never call abort (), assert () ... (Well, almost never, see Practice 25)

When alibrary aborts due to some kind of anomaly, it is saying there is no hope for
execution to proceed normally beyond the point where the anomaly is detected.
Nonetheless, it is dictatorially making this decision on behalf of the client. Even if the
anomaly turns out to be some kind of internal bug in the library, which obviously cannot
be resolved in the current execution, aborting is a bad thing to do. Thefact is, alibrary
developer cannot possibly know the fault-tolerant context in which hisfher library isbeing
used. The client may indeed be able to recover from the situation even if the library
cannot.

For example, consider a scientific computing client that uses multiple solver libraries.
One, say | i bsol vB. a, isrelatively new and untested while another, say | i bsol vA. a, has
been used without error by the client for years. The client may be designed in such away
that if it encounters problemsusing | i bsol vB. a, it ssmply falls back to using
l'i bsol vA. a. However, if 1 i bsol vB. a aborts due to an anomaly it detects, the client
cannot recover. Furthermore, even if therewasno | i bsol vA. a to fall back on, there can
be other actions a client might like to take in response to an anomaly in | i bsol vB. a. For
example, after the client has ground out numerical computation for hours, it may wish
saveitsinternal state (make a check point) before terminating in response to an anomaly
inlibsol vB. a. Again, aclient cannot do thisif alibrary it uses decides, for any reason, to
abort.

For these reasons, a smart library contains no callsto abort () orassert() orthe
like.

Practice 25: Abort only to avoid parallel deadlock

For parallel libraries, it isimportant to recognize that there isindeed a fate worse than
abort. It is deadlock. The problem with deadlock isthat it is as bad as an abort in that
execution ceases with no way to gracefully recover, but worse than abort in that the client
doesn’t know it has happened.

Smart paralé libraries are designed with thisin mind and include checks to detect
situations that can or will lead to deadlock and then abort before it occurs. For example,

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

the call to open afilein HDF5, HsFopen() , iscollective across all processors and requires
all processors to pass the same name for thefile. If they don’t, deadlock can occur, maybe
within in the execution of HsFopen() or maybe in some later API call involving the file.
Of course, to detect this condition, HDF5 would need to engage in communication to
confirm all processors agree on the file name before proceeding to open the file and abort
if it is detected that they all do not agree on the file name. Since would be costly to do
communication to check for this condition all the time, it should be possible to turn it off
(Practice 20).

Practice 26: For parallel libraries, check processor agreement in collective calls

Inaparald library, certain API calls may be collective. This meansthat if any
processor makes the call, all processors must make the call. Typicaly, in acollective call
all processors must agree on one or more of the argumentsin the call. When thisis not the
case, the behavior can be undefined and can often lead to deadlock. The problem is that
the point at which deadlock occurs can be later enough in the execution that finding the
actual cause can be very difficult.

A smart library provides checksin collective calls to confirm that indeed all
processors do agree on the arguments they are supposed to agree on. Again, although
these checks involve additional communication, since they can be turned on or off for any
given run, they do not always have to effect performance.

In cases where the data structure that all processors must agree on is large and/or
complex, it is easiest to communicate and compare check sums on the data instead of the
actual data.

Practice 27: Test thelibrary’sability to catch the anomaliesit claimsto detect

False positive and false negative anomaly indicators are painfully misleading to the
user. A false positive permits execution to continue giving the false impression that all is
well. Later on in execution when things really unravel, the last thing the user will think to
consider as aroot cause is a condition the library claims to catch but failed to report.
Likewise, afalse negative can cause the user to debug a nonexistent problem. So, its
important for anomaly detection code to be correct.

A smart library includestests aimed at driving the library into anomal ous behavior and
confirming the library indeed catchesiit.

Practice 28: Pass all anomaly response through a common handling function

In asmart library, all anomalies are handled by a common handling function. By
passing all response to anomal ous behavior through this function, asmart library can offer
agreat deal of flexibility in deciding just what its response needsto be. Will it smply print
awarning message and continue? Will it print the function call stack? Will it return
control to the client with an error code? Or, will it throw an exception the client has
claimed responsibility for catching? Will it pause execution to wait for a debugger to

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

attach? The point is that there are many, many useful things alibrary can do in responseto
an anomaly and it is worthwhile to provide a single point of control for all responses.

In fact, in the case where multiple libraries are involved, it is preferable that
anomalous behavior in any one library be handled by the same handling function.
Otherwise, the client winds up having to deal with each library’s own unique way of
responding to an anomaly.

Practice 29: Check for spelling errorsin string-based control parameters

If command-line arguments or environment variables are used to control functionality
like anomaly detection (Practice 22), API call tracing (Practice 1), and other behaviors of
alibrary, it becomesimportant for the library to detect when auser might have requested a
particular behavior but accidentally miss-spelled the parameter that controlsiit.

A smart library employs a standard naming scheme for all of its command-line
arguments and environment variables (Practice 4) so that miss-spellings can be detected.
For example, the SAF library watches for several environment variables that control its
behavior. Eachis prefixed with * SAF . The SAF library reads all variables defined in the
environment looking for all those that begin with * SAF . For each variable that it finds, it
checksto seeif that variable is one that the library knows about. If not, a message warning
of the possibility of a miss-spelled environment variable is displayed. Of course, this
cannot catch amiss-spelling in the first 3 characters but hopefully those are easy for the
user herself to spot.

Practicesthat L ead to Quality Documentation
In this section we describe afew other practices related to documentation.

Practice 30: Document compile-time symbolsthelibrary definesfor itsclient’sto use

A smart library documents the compile-time symbolsit defines for its clients to query
for the existence of certain features, version information, etc.

Practice 31: Document environment vars and command-lineargsthelibrary uses

Itiscommon to find in the documentation for an application an explanation of relevant
environment variables and command-line arguments. Ordinarily, one would not think of
having to do the same thing for alibrary. However, several of the practices described so
far for smart libraries have involved the use of environment variables and command-line
arguments to control the behavior of the library. It isimportant to document these.

A smart library documents environment variables and command-line arguments, if
any, that control its behavior.

Practice 32: Document the version in which each public APl symbol first appear ed

When application developers are using a library and referring to its documentation, if
they wish to make their application backward compatible with different versions of the

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

library, they need to know if certain API functionsthey’re using are only availablein
certain versions and, of course, which versions.

In asmart library, API functions that were introduced after itsfirst public release are
documented with the version number they entered the API and, if applicable, the version
number they were deprecated and later removed from the API.

Practice 33: Use a single-source auto-documentation tool such as mkdoc

There are anumber of tools now available that enable library developersto write
documentation and maintain it embedded directly in the library source code as comments.
However, thereisamajor problem with aimost all of these tools. They rely upon
comments that duplicate information already available in the executable statements of the
source code itself. For example, one needs to enumerate all of the argumentsto afunction
in the function’s comment-block. Over time, as code evolves, its far too easy for the
comment and the executable statements of the source code to get out of sync. In short,
none of the tools currently available, save one, enforce atruly single source for
documentation.

A tool developed at Livermore Labs called mkdoc, for Make Documentation, parses
the executabl e statements of the source code -- functions, data-types, macros, etc. -- to
extract symbol namesit usesin the documentation it produces. For example, in the source
code below...

/* Chapter: Sets
Audi ence: Public

Pur pose: Declare a new set */
SAF_Set |l d saf_decl are_set (
const char *nane, /* name of set to create */
int topo_dim /* topol ogical dinmension of set */

SAF _Bool is_extendible /* is the set extendible or not */

int retval = -1;
SAF_ENTER(retval, saf_declare_set);

SAF_REQUI RE(...); /* a pre-condition */
SAF_REQUI RE(. . .); /* anot her pre-condition */

/* inplenmentation details */
SAF_ENSURE(. . .); /* a post-condition */

SAF_LEAVE(retval);
}

mkdoc will extract the function’s name, saf _decl are_set , aswell asitsargument’s
names and their types such asconst char *name and the optional comments after the

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

arguments when it produces documentation. Mkdoc will aso extract pre-, post- and
invariant conditions encoded as the SAF_ REQUI RE/ SAF_ENSURE macros.

Often, with reasonably chosen symbol names, very little additional documentation is
necessary. When it is, mkdoc offers a number of features for managing this documentation
which make it far superior to most other auto-documentation tools. The reader is referred
to (Matzke, 2000) for more information about mkdoc.

A smart library uses atruly single-source, auto-documentation tool.

Practice 34: Make even API function call instances themselves self-documenting

Often, userslearn how to use alibrary by cutting and pasting code from other example
clientsthat use that library. Consequently, it can beimportant for each API call instance to
be a self-documenting as possible. Consider the following two calls to create a set object
in the SAF library,

my Set
my Set

saf _declare_set(“mySet”, 3, false);
saf _declare_set (“mySet”, TOPOLOG CAL_DI M 3, |S NOT_EXTENDI BLE) ;

The second version gives alot more information about what the arguments mean. It
suggests that the second parameter is the topological dimension of the set and the third
parameter indicates whether the set is extendible or not. Of course, in either case without
the API reference manual, the user would still have to guess what the first parameter is but
most would probably guess correctly that it is the name to be given to the set.

A smart library is designed so that each API call instance can be as self-documenting
as possible.

Smart LibrariesIn Action: Some Real-World Experiences

In this concluding section, we give ashort narrative of some real-world experiencesin
how smart libraries have been a great help in saving time.

A recent build of Ale3d with HDF5

Recently, Rob Neely, an Ale3d developer, was building Ale3d on a new system at
LLNL. Rob encountered a problem when trying to run the Ale3d he had built. Ale3d
started and ran fine. However, when it began to write arestart or plot dump, it would
produce an error message (Practice 7), presumably from the HDF5 library, that looked
like...

HDF5 Header and Li brary versions do not agree
Headers say 1.2.0. Library says 1.4.5

S0, clearly thiswas a situation in which somewhere in all the code that was linked
together to produce the Ale3d executable, one piece of code was compiled with headers
for version 1.2.0 of the HDF5 library but everything wound up being linked to version

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

1.4.5 of the HDF5 library.

We looked over all the makefiles and the actual compiler and link commands used to
build Ale3d. They all had include and library specifications for HDF5 of this form.

-1/ usr/ gapps/ al e3d/ packages/ hdf 5-1. 4. 5/i ncl ude
- L/ usr/ gapps/ al e3d/ packages/ hdf5-1.4.5/1ib -1hdf5

Next, we looked at the actual header, hdf 5. h and library files, | i bhdf 5. a, in these
directories to confirm that both were indeed version 1.4.5 of the HDF5 library. We
visually inspected hdf 5. h and we used the command (Practice 11)

% strings libhdf5.a | grep HDF5 library version

all of which confirmed that the header and library fileswere indeed for version 1.4.5 of the
library.

At this point, | suggested that Rob try bypassing the HDF5 version check by setting
the environment variable, HDF5_DI SABLE_VERSI ON_CHECK when running Ale3d. |
explained that if the version check error was afalse alarm, this would permit execution to
proceed (Practice 8) past the check but that if the version check error was real he would
probably encounter all sorts of odd issues when writing arestart file. For this reason, Rob
was reluctant to try this. Instead, he wanted to focus on finding out why HDF5 was
reporting a header and library version mismatch.

After further thought, we discovered that there was an old version of HDF5, version
1.2.0,installedin/usr /1 ocal . It was this version’s header files that were getting picked
up when Ale3d was being compiled. Nonetheless, Ale3d was still being linked to the
version of HDF5in/ usr/ gapps/ al e3d/ packages/ hdf 5- 1. 4. 5/ 1 i b. Once thiswas
discovered, the problem was resolved.

Alphaversion of SIERRA’s plot dump to SAF

When SIERRA was first starting to use the Sets and Fields (SAF) scientific database
library for its plot dump, occasionally SIERRA would go into deadlock in parallel during
one of the callsinto the SAF library.

We suspected that the problem was that some processors were not agreeing on
collective arguments to collective calls as they should. We wanted to re-run the test
problems that hung with some additional debugging featuresin the library enabled.
Fortunately, because of the way SAF is designed, this simply meant setting some
environment variables and re-running SIERRA (Practice 20).

Were-ran SIERRA with al of SAF s pre-condition checks turned on by setting the
environment variable, SAF_PRECOND DI SABLE to none. During the execution, SAF
reported that the argument passed by two different processors in a collective call to
declare afield in SAF were passing different values for the field’ s name and then aborted
(Practice 25). SAF aborted execution when it detected this condition because this sort of
condition is exactly the kind that can lead to deadlock.

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

Summary

As scientific computing applications grow in complexity, more and more functionality
is packaged in independently developed libraries. Worse, as the computing environments
in which these applications run grow in complexity, it gets easier to make mistakesin
building, installing and using libraries as well as the applications that depend on them.

We have shown that there are key differencesin software quality assurance standards
for applications and libraries. We have introduced a variety of software quality
engineering practices aimed at minimizing the likelihood of making mistakesin using
libraries and at maximizing users' ability to diagnose and correct them when they occur.
We have introduced the term Smart Library to refer to alibrary that is developed with
these basic principlesin mind.

We then described a number of practicesin four broad categories; practices upon
which all others depend, practices that enable usersto deal with change, practices that
enable users to detect and diagnose anomalies and practices that lead to quality
documentation.

Finally, we have described some real-world experiences in which smart libraries have
demonstrated key benefits.

Acknowledgments

The authors have used information gained from HDF5, MPI and SAF software
development projects. In particular, we would like to thank Quincey Koziol and Albert
Cheng of the HDF5 team for sharing their experiences and wisdom in devel oping various
versions of HDF 1/O software, the entire MPI Forum for its excellent work in designing
and documenting MPI, Version 1.1 from which we have also learned much. Thiswork
was performed under the auspices of the U.S. Department of Energy by the University of
California, Lawrence Livermore National Laboratory under Contract No.
W-7405-Eng-48.

Refer ences

Brand, F., "HDF: the Hierarchical Data Format. " (Technology Tutorial) Dr. Dobb’s
Journal V23, N5, pp. 42-48 (1998).

Matzke, R.P., “The Mkdoc Single-Source Auto-Documentation Tool”, (2001)
matzke@lInl.gov

Miller, M.C., et a. “Enabling Interoperation of High Performance, Scientific Computing
Applications: Modeling Scientific Data With The Sets & Fields (SAF) Modeling
System”, ICCS-2001 v2. (2001)

The MPI Forum, “The MPI Standard Version 1.1", http://www-unix.mcs.anl.gov/mpi
(1995)

Plessel, T., “Design by Contract: A Missing Link in the Quest for Quality Software”,

Miller, M.C. et al.

UNCLASSIFIED

UNCLASSIFIED

Proceedings of the NECDC 2004

http://www.elj.com/eiffel/dbc (1998).

Miller, M.C. et al.

UNCLASSIFIED

