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The National Ignition Facility (NIF) performs inertial confinement 
fusion experiments. To better understand the process, we run 
intricate simulations of the experiment. Equations of state (EOS) 
provide key information to simulate the hydrodynamic processes 
in the fuel capsule.

Improve Equations of State
• Currently, EOS data is stored in memory intensive tables and 

requires interpolation between data points
• Neural networks take minimal time and memory to evaluate 

and can be queried at any point

Incorporate Physics into Machine Learning
• Typical neural networks may not obey physics; it is unclear how 

well these tools learn the physical laws from data
• We can force the model to obey phase transitions and create 

thermodynamically consistent outputs by structuring the 
model accordingly

MOTIVATION

DATA AND METHODS

MODEL 2: NEURAL NETWORK WITH PHASES

DISCUSSION

• Neural networks are 
effective at predicting 
equation of state values, 
mostly within 1%. 

• Model 2 is guaranteed to 
contain phase 
information.

• Metrics and heat maps of 
error show general 
improvement by 
incorporating phase 
transitions.

• Entropy predictions are 
improved the most from 
including phase 
information.

• Although some global 
metrics are slightly 
worsened in Model 2, the 
model still is an excellent 
predictor.

CONCLUSIONS AND FUTURE DIRECTIONS

Phase transition incorporation suggests promising results for 
manually integrating physical knowledge into data science models.
• Global error metrics are not necessarily indicative of localized 

model quality 
• Neural networks can create accurate models for DT equations 

of state, within 1% of true values in most cases
• Structuring neural networks to include phase transitions 

improves localized prediction outcomes 

Next: Thermodynamically Consistent Output to Embed in 
Hydrocodes
• From energy and entropy predictions, we can calculate free 

energy
• Other desired quantities, such as pressure and sound speed, 

can be obtained by differentiating free energy. Differentiation is 
easy for neural networks.

• Such calculations ensure thermodynamic consistency, allowing 
use in hydrocodes and incorporating additional physics
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Data:
• LEOS 1018 Equation of state tables for Deuterium and Tritium 

mixture
• Input: density (0 – 12500 g/cm3), temperature (5 – 2e9 K)

• Output: energy (-2e10 – 2e17 erg/g), entropy (0 – 1.5e12 erg/K)

• Irregularly spaced grid (8800 points)
Methods:
• Shift and normalize data, transform to log space
• Deep Jointly Informed Neural Networks (DJINN) use decision 

tree models to guide neural network structure(1)

• Ensemble method, the results of 10 tree models are used to 
select the best prediction

Model 1: 
• Feed data directly into single DJINN model
Model 2:
• Incorporate phase transitions into the model, hopefully to 

reduce error around phase transitions
• K-Means clustering algorithm to identify 3 phases in the data
• Train 3 separate DJINN models, one on each phase 

• Results are evaluated using mean squared error (MSE) and 
mean absolute error (MAE) metrics:
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Physically Consistent Neural Network Models for Equations of State 

MODEL 1: SIMPLE NEURAL NETWORK
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GOAL: Use neural networks to improve equation of state 
models for NIF simulations

Figure 5 (below): Relative error for energy and 
entropy predictions from Model 2. Overall, 
results appear to be slightly improved. The 
entropy predictions see the greatest benefit 
from incorporating phase information.

Figure 1 (left): Diagram of model 
1, a simple neural network design 
to model equations of state.

Figure 3 (below): Diagram of model 2, a neural network 
design incorporating phase changes. Ideally, structuring 
the neural network to incorporate phase changes will 
alleviate some of the structured error seen in Model 1.

Figure 2 (right): Relative error of 
energy and entropy predictions from 
Model 1. Structure within the heat 
maps suggests there are patterns in 
the data that the neural network has 
trouble capturing.

Figure 4 (left): Diagram of 3 phases identified by K-Means 
algorithm. The phase boundaries seem to largely align 
with the error structures in the heat plots.
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Integrating phase changes into equations of state neural network 
models improves localized error and includes physical behavior.

Figure 7: Relative improvement in 
energy and entropy prediction by 
incorporating phase changes into 
neural network model.

Mean Squared Error:  0.025257
Mean Absolute Error: 0.073088
Explained Variance: 0.999080

Mean Squared Error: 0.049740
Mean Absolute Error: 0.128513
Explained Variance: 0.997258

Ø Even the naive model achieves high accuracy – on average, energy prediction is within 1.5% of the 
true value, while entropy prediction is within 3% 

Mean Squared Error: 0.020873
Mean Absolute Error: 0.067006
Explained Variance:  0.999240

Mean Squared Error: 0.047914
Mean Absolute Error: 0.094997
Explained Variance: 0.997116

Figure 6 (left): Chart of 
percent improvement of 
error metrics. Global metrics 
and re-transformed explained 
variance are all improved. 
The re-transformed MSE and 
MAE show somewhat worse 
results. 
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