
LLNL-CONF-411205 Page 1 / 21

Mercury + VisIt: Integration of a Real-Time Graphical
Analysis Capability Into a Monte Carlo Transport Code

Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551

Matthew O'Brien and Richard Procassini
Lawrence Livermore National Laboratory

Kenneth Joy
University of California at Davis

Mathematics and Computations 2009 Meeting
4 – 7 May 2009

● Rather than “reinventing the wheel” by developing custom software to visualize
the results from our Monte Carlo particle transport simulations, our team has
chosen VisIt [1],[2], an existing scientific visualization and data analysis tool.

● For years, the Mercury [3],[4] Monte Carlo particle transport code had the ability
to write restart and graphics files that could be opened by VisIt for post-pro-
cessing visualization.

● Recently, our team has connected Mercury and VisIt via in-memory data trans-
fers.

● This in-line visualization capability makes use of the VisIt application program-
ming interface (API) [5] function calls which provide VisIt with the data that it
needs for plotting, based on user requests.

● VisIt is capable of discretizing and visualizing the following types of data:

➔Domain decomposed mesh based data on structured and unstructured meshes

➔“Point” or particle based data

➔Constructive solid geometry (CSG), aka combinatorial geometry (CG), data

LLNL-CONF-411205 Page 2 / 21

Introduction

● VisIt has an API for registering the data that is available for plotting in the VisIt
data windows.

● The simulation (Mercury) implements a series of data callback functions to send
VisIt the data that the user requests.

● Mercury has recently been extended to support a Python interactive interface.

● This allows the user to issue the “visit()” command to launch VisIt and connect it
to the running Mercury simulation.

● Once this connection has been made, the user may select various plots from the
VisIt graphical user interface (GUI).

● Alternatively, the user may request plots directly from the Python interface to
Mercury by feeding VisIt a Python script for visualization [6].

● The Mercury input also supports setting the frequency at which the VisIt plots
are updated, even as the simulation is running.

LLNL-CONF-411205 Page 3 / 21

Integration of Mercury and VisIt Makes Use
of the VisIt Data Callback Interface

LLNL-CONF-411205 Page 4 / 21

The VisIt Control Panel and Data Windows
Visualization of the Godiva Critical Assembly

Double-Density Godiva α Eigenvalue Calculation

Upper Left: α and <α> ei-
genvalue iteration history

Upper Right: keff and <keff>
eigenvalue iteration history

Lower Left: Pseudocolor
plot of neutron number
density

Lower Right: Particles
colored coded by energy
plus the outer surface of
the Godiva sphere

LLNL-CONF-411205 Page 5 / 21

Types of Plots Supported by VisIt
Criticality Of The World Test Problem

(a)
Material Plot

Particle cell attribute

(b)
Particle Plot

Particle cell attribute

(c)
Pseudocolor Plot

Particle number density

A 7 x 7 x 7 lattice of 235U spheres embedded in a block of low density material. This combinatorial geometry prob-
lem has 73 + 1 = 344 cells. Each sphere has a radius r = 5.0cm , with the exception of the center sphere, which has
a radius r = 8.7407cm . The density of all spheres is  = 19.1g /cm3 . The centers of each of the spheres are separ-
ated by  = 24.0cm . Low density 235U ( = 10−10g /cm3) surrounds the lattice of spheres. Each of the spheres is
subcritical, with the exception of the center sphere, which is supercritical. The initial source of particles is in a
sphere at a corner of the lattice. A static k eigenvalue calculation is performed on this system using 105 neutrons.

LLNL-CONF-411205 Page 6 / 21

(a)
Mesh Plot

VisIt works with data defined
on a mesh, so Mercury con-
verts our CG representation

into a mesh representation for
visualization.

(b)
Domain Plot

This problem is run on 64
processors with 64 domains,
hence the graphics mesh is

broken into 64 domains.

(c)
Volume Rendering Plot
A volume rendering of the
particle number density.

Types of Plots Supported by VisIt
Criticality Of The World Test Problem

LLNL-CONF-411205 Page 7 / 21

(a)
Particle Plot

Particles can be color coded
by any particle attribute. Here,

particles are colored by the
CG cell they reside in.

(b)
Pseudocolor Plot

Pseudocolor plots of any field
defined on the background
materials can be created.
Here, the CG cell index is

plotted.

Types of Plots Supported by VisIt
Criticality Of The World Test Problem

LLNL-CONF-411205 Page 8 / 21

(a)
Particle Plot

Particles can be color coded
by any particle attribute. Here,

particles are colored by the
kinetic energy.

(b)
Particle Vector Plot

Particle velocity vectors can
also be plotted. Every 16th

particle is plotted to reduce the
clutter of the image.

Types of Plots Supported by VisIt
Criticality Of The World Test Problem

LLNL-CONF-411205 Page 9 / 21

(a)
Histogram Plot

A histogram of the particle
kinetic energy distribution.

This is a data analysis
capability in Visit. Mercury

provides the kinetic energy of
each particle to VisIt, which

creates the histogram.

(b)
Curve Plot

A curve plot of the iteration
history of:

1. k Eigenvalue
2. <k> Eigenvalue
3. <k> – σ(k)
4. <k> + σ(k)

Types of Plots Supported by VisIt
Criticality Of The World Test Problem

LLNL-CONF-411205 Page 10 / 21

(b) Iteration 6(a) Iteration 1

(c) Iteration 26 (d) Iteration 63

Iterations 1, 6, 26 and 63 of
the Criticality of the World
test problem are shown.
Each iteration shows a
screen that contains 4
plots:

Upper Left: Pseudocolor
plot of log(number density)

Upper Right: Curve plot of
k, <k>, <k> + σ(k) and <k>
- σ(k)

Lower Left: Particle plot of
log(particle kinetic energy)

Lower Right: Curve plot of
flux entropy (eigenvector
convergence diagnostic)

Criticality Of The World Test Problem
Evolution of the Eigenvalue Calculation

LLNL-CONF-411205 Page 11 / 21

VisIt Supports Python Scripting and Script
Creation via Recording of Mouse Clicks

Command Window
Visit can record mouse clicks
as a Python script. The script

can be fed back into VisIt
during subsequent plotting.

LLNL-CONF-411205 Page 12 / 21

Combinatorial Geometry Discretization
Options in Mercury + VisIt

(b)
Adaptive Mesh Refinement Method
Mercury recursively samples each cell to
get an accurate volume fraction of each

CG cell within each graphics cell.
Mercury writes out volume fraction

information and relies on VisIt’s Material
Interface Reconstruc-tion (MIR) algorithm
to subdivide the graphics cells into parts.

(a)
“Lego” Method

The first implementation resembles
“Legos”. The user defines a graphics
mesh and each graphics cell is
assigned exactly one CG cell. The
cell identity is chosen by asking
“which CG cell is the center of each
graphic cell in?”

(c)
Native VisIt Discretization

Mercury does not convert its internal
CG representation to a mesh repres-
entation. Rather the CG represen-
tation is contructed by VisIt from

coefficients of the analytic surfaces
that define the cells, and how the

surfaces are combined to form cells.

LLNL-CONF-411205 Page 13 / 21

(b)
Conformal Method

The conformal method in Mercury
starts with a Cartesian mesh, and then
moves graphics cell nodes onto CG
cell boundaries. While this method
is still being researched, it has the

promise of being faster that the Mixed
Cell method.

(a)
Adaptive Mesh Refinement Method
In the adaptive mesh refinement (AMR)
method the mesh is Cartesian. Mercury

has computed volume fractions of each CG
cell within each graphics cell, and VisIt uses
its Material Interface Reconstruction (MIR)
algorithm to draw the CG cell boundaries.

Combinatorial Geometry Discretization
AMR Method vs. Conformal Method

LLNL-CONF-411205 Page 14 / 21

Adaptive Mesh Refinement (AMR) Method
This is a plot of the Error vs. the Refinement Level in the AMR
method for maximum refinement level n = 7, 8, 9, 10, 11. An

expoential fit is calculated to be E[n] = 0.1028 * (1/5.27)n. This
says that the error goes down by a factor of about (1/5.27) when
you increase the refinement level by one. This is roughly what
should be expected, since each graphics cell is devided into 8
sub-cells as you increase the refinement level by 1, one would

expect the error to go down by at most a factor of 8.

AMR Discretization Method
Volume Fraction Error Analysis

In the AMR method, Mercury recursively
samples each graphics mesh cell,

attempting to calculate an accurate volume
fraction for each CG cell in that graphics

mesh cell. In this error analysis, a sphere
of radius 8.7407, centered at (0,0,0), is

contained in a single graphics mesh cell of
extent [0, 10] x [0, 10] x [0, 10]. Therefore,
an octant of the sphere will be sampled.
The min and max refinement levels are

varied from 1 to 11, and enforce
min(refinement) = max(re-

finement). At refinement level n, there
are 8n sample points. The exact volume of

the octant is:

V = (4/3*π*8.74073)/8 = 349.653005762.

As the refinement level is increased by 1,
the error should to go down roughly by a

factor of 8, since each graphics cell is sub-
divided into 8 sub-cells. The error at

refinement level n is defined as:

E(n) = | V(exact) – V(calculated) |

LLNL-CONF-411205 Page 15 / 21

 In this simple example, 2 Uranium (red) spheres are overlapping. A 'void' (dark blue) sphere that has been excluded from
the Air (green) sphere. The user must decide if the 'void' is correct. In this problem there is a vacuum boundary condition
around the green sphere, so it is valid to have 'void' outside of the green sphere. But there is no boundary condition on the

small internal blue 'void' sphere, hence this is a geometry setup error. Mercury prints out of the mass and volume of all
materials in the problem, including any 'void' or 'overlapping_cells' found:

Material Uranium- Mass: 2.0408300111e+03 Volume: 5.4451174255e+01
Material Air- Mass: 2.3926665283e+00 Volume: 1.9938887736e+03
Material void- Mass: 0.0000000000e+00 Volume: 3.2463340822e+03
Material overlapping_cells- Mass: 0.0000000000e+00 Volume: 2.9325969955e+01

Combinatorial Geometry Error Detection
Detection of Voids and Overlaps

(a)
All Materials Plotted

(b)
Only 'Void' and 'Overlap' Materials Plotted

LLNL-CONF-411205 Page 16 / 21

Visualization of Load Balancing via
Dynamic Domain Decomposition

(a)
Uniform Domain Decomposition

(b)
Load Balanced Domain Decomposition

A demonstration of dynamic domain decomposition attempting to balance the particle
workload: Particles are colored by domain and domain boundaries are shown in black.

LLNL-CONF-411205 Page 17 / 21

Visualization of Material Interface
Reconstruction for Particle Tracking

The underlying mesh in this problem is a 2-D
cylindrical r - z mesh, so a “cylindrical projection” has

been applied to the particle coordinates. This plot
has been used to verify the Material Interface
Reconstruction (MIR) algorithm in Mercury.

First note the bold black line that identifies the
material interface. That line was calculated to be

normal to the gradient of the material volume fraction.
 The position of the line was found to match the input
volume fractions of the materials in the underlying

mesh.

Next note that each particle is colored by the material
that it resides in. It took many iterations of code

development followed by visualization to obtain this
plot. It was very easy to spot particles that were

colored the incorrectly given their location. This type
of visualization is extremely valuable for validating

code development activities.

LLNL-CONF-411205 Page 18 / 21

(a)
Particles Color Coded by Region

The plot shows a combinatorial geometry with two
meshes embedded within it. The particles are
colored by “region”, meaning the mesh or CG

region they reside in. In this case, particles are
blue if they are in the CG (none present), green if
they are in the cylindrical region (2-D mesh), and

red if they are in the cube region (3-D mesh).

Visualization of Embedded Meshes
Meshes Embedded in Combinatorial Geometry

(b)
CG Plus Two Embedded Mesh Regions
This plot is color coded by the CG cell index for

the CG region. It also shows the outer boundaries
of the 2-D cylindrical and 3-D Cartesian embed-

ded mesh regions.

LLNL-CONF-411205 Page 19 / 21

Complex Geometry Setup Verification and
Data Analysis

(a) NIF Target Chamber and Structure (b) NIF Target Chamber and Structure (b) Fusion Shield Test Facility

(d) Concentric Spheres Critical Assembly (e) Cylindrical Critical Assembly (f) Cylindrical Critical Assembly

References
[1] The VisIt Code Team, "VisIt User's Manual (Version 1.5)", Lawrence Livermore

National Laboratory, Report UCRL-SM-220449 (2005).
[2] The VisIt Code Team, "The VisIt Web Site", http://www.llnl.gov/visit (2008).
[3] The Mercury Code Team, "Mercury User Guide (Version c.2)", awrence

Livermore National Laboratory, Report UCRL-TM-204296, Revision 1 (2008).
[4] The Mercury Code Team, "The Mercury Web Site", http://www.llnl.gov/mercury

(2009).
[5] The VisIt Code Team, "Getting Data Into VisIt (Version 1.5.4)", Lawrence

Livermore National Laboratory, Report UCRL-SM-224277 (Chapter 5) (2006).
[6] VisIt Code Team, "VisIt Python Interface Manual (Version 1.4.1)", Lawrence

Livermore National Laboratory, Report UCRL-SM-209589 (2005).

LLNL-CONF-411205 Page 20 / 21

LLNL-CONF-411205 Page 21 / 21

We would like to thank the following VisIt code developers: Brad Whitlock for
supporting us by implementing the inline VisIt interface and for adding the
CSG inline interface to VisIt, and Mark Miller for implementing the VisIt dis-

cretization of CSG data for visualization in VisIt and for various performance
enhancements to make it much faster and more usable.

This work performed under the auspices of the U.S. Department of Energy by
Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

