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Load

Balancing Problem

= When a Monte Carlo particle transport code is

paral
IS rec

elized via domain replication, the geometry
undantly stored on all of the processors

and t

ne particles are distributed.

= |f all of the processors start with exactly the
same number of particles, after one cycle of
advancing the particles each processor may end
up with a different number of particles.

= This dispersion of particle counts across
processors causes load imbalance.
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Load Balancing Solution

= Particles must be redistributed across
norocessors to minimize the most worked
Drocessor.

= Let w,, Wy, ..., Wy, be the workload (particle
count) on each of N processors.

1
. ] . —Z . W.
= Load Balance Efficiency = ave(wi) _ N &osi<N Wi
maxwi) B

= \WWe describe an efficient algorithm for
communicating particles so that the particle
count is balanced across processors.
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Outline

= Description of Mercury Monte Carlo Code
= Definition of Scalability

= Load balancing particle workload across
processors
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Mercury: LLNL’s Monte Carlo
Particle Transport Code

= Solves dynamic neutron and gamma transport problems
Solves eigenvalue criticality problems
Also has charged particle transport capability

Written in C++, python user interface, massively parallel,
distributed memory MPI and shared memory OpenMP

Parallelized via domain decomposition and domain
replication
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Definition of Scalability

= Scalability: The ability to perform well as the

number of processors, N, increases.
An algorithm is scalable if its runtime is O(N¢) Ve >0

Weak Scaling: constant work per processor, ie. problem size increases
as the processor count increase. It examines parallel overhead.
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Non-Scalable Example: Run
time is proportional to the
number of processors.
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Time vs. Number of
Processors
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Scalable Example: Run time
is proportional to the logarithm
of the number of processors.
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Modern Supercomputing History at

Lawrence Livermore National Laboratory

Number of Processors

1998 Blue

2001 White

2005 Purple
2004 BlueGene/L
2009 Dawn

2012 Sequoia
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Load Balance Efficiency vs. Iteration
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Old vs. New Load Balancing Algorithm

= Our old load balancing algorithm gathered a
global view of the amount of work each
processor had, and then made global decisions
about how to communicate particles to achieve
load balance.

« Not scalable since it needs to know about every
Processor.

= Our new load balancing algorithm does iterative
pairwise balancing step, in a clever way, such
that after ®(log(n)) iterations, the particle
workload is balanced across all processors.
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Load Balancing Algorithm

BalanceWithPartnerWrapper()

{
int NumRounds = ceiling(log2(numProcessors));
for ( int k = 0; k < NumRounds; k++ )
{
BalanceWithPartner(k);
by
}
BalanceWithPartner(int binaryDigit)
{
// rank is this processor’s MPI rank
// all binary digits agree except binaryDigit is flipped in partner
int partner = rank ™ (1 << binaryDigit);
// Send and Recv with partner processor the number of particles each has
int aveNumParticles = ( myNumParticles + partnerNumParticles ) /7 2;
ifT ( myNumParticles > partnerNumParticles ) // 1 am sending
{
// send (myNumParticles — aveNumParticles) particles to partner
by
else if ( myNumParticles < partnerNumParticles ) // 1 am receiving
{
// recv (partnerNumParticles — aveNumParticles) particles from partner
by
}
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Partner Processor Function

We now define how the processors are paired. Processors are paired based upon their
processor rank and the current iteration number k of the algorithm. We choose the
partner processor on the ki iteration of the algorithm by defining the partner function f,,
and the rank of the partner processor is given by: partner = f, (rank), where

rank + 2% if the k" binary digit of rank is 0
fr(rank) = K h s g .
rank — 2% if the k*"* binary digit of rank is 1

Another interpretation of f, is to flip the k" binary digit of the input argument. If a,...a,
are the binary digits of the processor rank, then
n
rank = a,ap_q ... Q1A Ag—1 -- A1y = z a;2! where a; € {0,1}
i=0
fe(rank) = fi (an@n-1 - A41Q A1 - A100) = Aplp—1 - Q410 Ag—1 - A1 Qg

where a; =1 — qy

f, has the appealing property that it is self-inverting: f (f.(rank)) = rank, i.e. f, is an
involution, so f,t =f, . As a result of this property,

f(rank) = partner and f, (partner) = rank
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Partner Processor Function

= The partner processor function f,, for k = 0,1,2,3,4.

= Note the functions are symmetric about the identity line (“y=x" line)
at integer values, which characterizes involutions (self inverse
functions, f = f~1).

= Desired property f(rank) = parter and f(partner) = rank
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Scalable Load Balancing Algorithm

Before Load Balancing 1 Round of Load Balancing
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Load Balancing N Processors At Once

BalanceWork(work[0..N-1], /* Input: Number of particles per processor */
communicator /* Input: MPI communicator */ ) {

Max_priority_queue maxQueue;

Min_priority_queue minQueue;

ave = (work[O] + work[1] + ... + work[N-1])/N;

for ( int rank = 0; rank < N; rank++ ) {
maxQueue . push(work[rank], rank);
minQueue.push(work[rank], rank);

+

for ( int iteration = 0; iteration < N; iteration++ ) {
(maxWork, maxRank) = maxQueue.pop();
(minWork, minRank) = minQueue.pop();
numParticles = min(ave — minWork, maxWork — ave);
minWork += numParticles;
maxWork -= numParticles;
Processor maxRank sends numParticles particles to processor minRank
Processor minRank receives numParticles particles from processor maxRank
maxQueue . push(maxWork, maxRank) ;
minQueue.push(minWork, minRank);

14 14
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Godiva Weak Scaling Test Problem

= 10,000 particles per processor.

= Runon 20=1, 21=2, 22=4, ..., 221=2,097,152 MPI processes of Sequoia.
= Weak scaling: constant work per processor.

= Double the number of processors — double the number of particles.

= Measures parallel overhead and load imbalance.

Godiva: Sphere of Uranium.
* Radius 8.7407cm
« Density 18.74 g/cm3
* The isotopic atom fractions
+ U234 =0.01025002
« U235 =0.9376829
« U238 = 0.05206708.
* The test problem identification
number: HEU-MET-FAST-001.
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Average Efficiency vs. Log2(Num_Processors)
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= Without load balancing, there is dispersion in the
number of particles per processor which decreases

efficiency.

= With load balancing, the efficiency remains over
95%, even at 2 Million MPI processes.
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Tracking Time vs. Log2(Num_Processors)
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Load Balancing Time vs. Log2(Num_Processors)
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We are load balancing with a processor group size of 2°=512 processors, so we see
discontinuous jumps in the run time at 2° and 2'® where we have to do an additional
round of load balancing.

Lawrence Livermore National Laboratory LLNL-POST-636781



Conclusions

= The new Load Balancing algorithm is scalable,
with complexity ®( log(N) ).

= Demonstrated good scalability up to 2 Million
MPI processes on Sequoia.

= Cannot know information about every other
processor, because that is not scalable.
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