Scalable Load Balancing for Massively
Parallel Distributed Monte Carlo Particle

Transport

M&C 2013

May 6, 2013 Matthew O’Brien, Patrick Brantley
and Kenneth Joy

B Lawrence Livermore
National Laboratory

LLNL-POST-635781

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Load

Balancing Problem

= When a Monte Carlo particle transport code is

paral
IS rec

elized via domain replication, the geometry
undantly stored on all of the processors

and t

ne particles are distributed.

= |f all of the processors start with exactly the
same number of particles, after one cycle of
advancing the particles each processor may end
up with a different number of particles.

= This dispersion of particle counts across
processors causes load imbalance.

Lawrence Livermore National Laboratory — nposT -

Load Balancing Solution

= Particles must be redistributed across
norocessors to minimize the most worked
Drocessor.

= Let w,, Wy, ..., Wy, be the workload (particle
count) on each of N processors.

1
.] . —Z . W.
= Load Balance Efficiency = ave(wi) _ N &osi<N Wi
maxwi) B

= \WWe describe an efficient algorithm for
communicating particles so that the particle
count is balanced across processors.

Lawrence Livermore National Laboratory Neost cas7e]

Outline

= Description of Mercury Monte Carlo Code
= Definition of Scalability

= Load balancing particle workload across
processors

v
ReSUItS - ‘ . Combinatorial
> eolV s

L‘ﬂ v

Lawrence Livermore National Laboratory — nposT ssrsr b

Mercury: LLNL’s Monte Carlo
Particle Transport Code

= Solves dynamic neutron and gamma transport problems
Solves eigenvalue criticality problems
Also has charged particle transport capability

Written in C++, python user interface, massively parallel,
distributed memory MPI and shared memory OpenMP

Parallelized via domain decomposition and domain
replication

Lawrence Livermore National Laboratory — nposT o] ™

Definition of Scalability

= Scalability: The ability to perform well as the

number of processors, N, increases.
An algorithm is scalable if its runtime is O(N¢) Ve >0

Weak Scaling: constant work per processor, ie. problem size increases
as the processor count increase. It examines parallel overhead.

Time vs. Number of
Processors

100 »

80 /

60 /

40 /

/

20
)l

1000 6000
Number of Processors

Time

Non-Scalable Example: Run
time is proportional to the
number of processors.

Lawrence Livermore National Laboratory

Time vs. Number of
Processors
100

Time

P S S S S
e R e)

Number of Processors

Scalable Example: Run time
is proportional to the logarithm
of the number of processors.

6
LLNL-POST-635781

Modern Supercomputing History at

Lawrence Livermore National Laboratory

Number of Processors

1998 Blue

2001 White

2005 Purple
2004 BlueGene/L
2009 Dawn

2012 Sequoia

Lawrence Livermore National Laboratory

5,856
8,192
12,544
65,636

147,456
1,572,864

100.00%

95.00%

90.00%

85.00%

80.00%

75.00%

70.00%

Load Balance Efficiency [%)]

65.00%

60.00%

55.00%

50.00%

Lawrence Livermore National Laboratory LLNL-POST-635781

Load Balance Efficiency vs. Iteration

R/\\ AVA\/AW
vV—N V¢ VAV\//
SN
\/\/\ 2™M Procs
m A S TANAA , 24 Procs
N V\\/V \/J 278 Procs
. 2M2 Procs
v - 276 Procs
. AN 2721 Procs
\/ AW
YN PR3N B3R E8535 S
Iteration

8

Old vs. New Load Balancing Algorithm

= Our old load balancing algorithm gathered a
global view of the amount of work each
processor had, and then made global decisions
about how to communicate particles to achieve
load balance.

« Not scalable since it needs to know about every
Processor.

= Our new load balancing algorithm does iterative
pairwise balancing step, in a clever way, such
that after ®(log(n)) iterations, the particle
workload is balanced across all processors.

Lawrence Livermore National Laboratory — nposT -

Load Balancing Algorithm

BalanceWithPartnerWrapper()

{
int NumRounds = ceiling(log2(numProcessors));
for (int k = 0; k < NumRounds; k++)
{
BalanceWithPartner(k);
by
}
BalanceWithPartner(int binaryDigit)
{
// rank is this processor’s MPI rank
// all binary digits agree except binaryDigit is flipped in partner
int partner = rank ™ (1 << binaryDigit);
// Send and Recv with partner processor the number of particles each has
int aveNumParticles = (myNumParticles + partnerNumParticles) /7 2;
ifT (myNumParticles > partnerNumParticles) // 1 am sending
{
// send (myNumParticles — aveNumParticles) particles to partner
by
else if (myNumParticles < partnerNumParticles) // 1 am receiving
{
// recv (partnerNumParticles — aveNumParticles) particles from partner
by
}

Lawrence Livermore National Laboratory LLNL-POST-636781

Partner Processor Function

We now define how the processors are paired. Processors are paired based upon their
processor rank and the current iteration number k of the algorithm. We choose the
partner processor on the ki iteration of the algorithm by defining the partner function f,,
and the rank of the partner processor is given by: partner = f, (rank), where

rank + 2% if the k" binary digit of rank is 0
fr(rank) = K h s g .
rank — 2% if the k*"* binary digit of rank is 1

Another interpretation of f, is to flip the k" binary digit of the input argument. If a,...a,
are the binary digits of the processor rank, then
n
rank = a,ap_q ... Q1A Ag—1 -- A1y = z a;2! where a; € {0,1}
i=0
fe(rank) = fi (an@n-1 - A41Q A1 - A100) = Aplp—1 - Q410 Ag—1 - A1 Qg

where a; =1 — qy

f, has the appealing property that it is self-inverting: f (f.(rank)) = rank, i.e. f, is an
involution, so f,t =f, . As a result of this property,

f(rank) = partner and f, (partner) = rank

Lawrence Livermore National Laboratory LLNL-POST-636751

Partner Processor Function

= The partner processor function f,, for k = 0,1,2,3,4.

= Note the functions are symmetric about the identity line (“y=x" line)
at integer values, which characterizes involutions (self inverse
functions, f = f~1).

= Desired property f(rank) = parter and f(partner) = rank

Lawrence Livermore National Laboratory LLNL-POST-636761

Scalable Load Balancing Algorithm

Before Load Balancing 1 Round of Load Balancing
7 7
6 6
- 5 - 5 -
g, g, -
<< <<
o 3 T 5 3 i
= 2 . = 2
1 1
0 0
S AR AN &S N2 3 A 5L A
Processor Rank Processor Rank
2 Rounds of Load Balancing 3 Rounds of Load Balancing
7
6 7
5 6
§ 4 kS >
¥ S4
g ;2
2 25
1 1
0 0
Processor Rank Processor Rank

Lawrence Livermore National Laboratory o

LLNL-POST-635781

Load Balancing N Processors At Once

BalanceWork(work[0..N-1], /* Input: Number of particles per processor */
communicator /* Input: MPI communicator */) {

Max_priority_queue maxQueue;

Min_priority_queue minQueue;

ave = (work[O] + work[1] + ... + work[N-1])/N;

for (int rank = 0; rank < N; rank++) {
maxQueue . push(work[rank], rank);
minQueue.push(work[rank], rank);

+

for (int iteration = 0; iteration < N; iteration++) {
(maxWork, maxRank) = maxQueue.pop();
(minWork, minRank) = minQueue.pop();
numParticles = min(ave — minWork, maxWork — ave);
minWork += numParticles;
maxWork -= numParticles;
Processor maxRank sends numParticles particles to processor minRank
Processor minRank receives numParticles particles from processor maxRank
maxQueue . push(maxWork, maxRank) ;
minQueue.push(minWork, minRank);

14 14

Lawrence Livermore National Laboratory LLNL-POST-635781

Godiva Weak Scaling Test Problem

= 10,000 particles per processor.

= Runon 20=1, 21=2, 22=4, ..., 221=2,097,152 MPI processes of Sequoia.
= Weak scaling: constant work per processor.

= Double the number of processors — double the number of particles.

= Measures parallel overhead and load imbalance.

Godiva: Sphere of Uranium.
* Radius 8.7407cm
« Density 18.74 g/cm3
* The isotopic atom fractions
+ U234 =0.01025002
« U235 =0.9376829
« U238 = 0.05206708.
* The test problem identification
number: HEU-MET-FAST-001.

Lawrence Livermore National Laboratory LLNL-POST-636751

Average Efficiency vs. Log2(Num_Processors)

100.00% M
95.00%

90.00%
85.00%
80.00%
75.00%
70.00%
65.00%
60.00%
55.00%
50.00%

Average Efficiency [%)]

.

\‘\\ —e— Not Load

\ Balanced

\ —=— Load Balanced

~———

*‘\

0

5 10 15 20
Log2(Num_Processors)

= Without load balancing, there is dispersion in the
number of particles per processor which decreases

efficiency.

= With load balancing, the efficiency remains over
95%, even at 2 Million MPI processes.

Lawrence Livermore National Laboratory LINLPOST-35781

Tracking Time vs. Log2(Num_Processors)

3.50E+02

3.00E402 /—_M_M

—o— Not Load Balanced

—&—| oad Balanced

‘v‘ v

— 2.50E+02 — = —s —— =

©

[

o

[&]

& 2.00E+02

()

£

E

o 1.50E+02

[y

=

[&]

©

F 1.00E+02

5.00E+01

0.00E+00 [[‘ \ [
6 8 10 12 14 20

Lawrence Livermore National Laboratory

Log2(Num_Processors)

17
LLNL-POST-635781

Load Balancing Time vs. Log2(Num_Processors)
1.20E+01

1.00E+01 /
8.00E+00 /
6.00E+00

4.00E+00 //
2.00E+00

0.00E+00 . [\ .
0 5 10 15 20

Log2(Num_Processors)

Wall Time [Seconds]

We are load balancing with a processor group size of 2°=512 processors, so we see
discontinuous jumps in the run time at 2° and 2'® where we have to do an additional
round of load balancing.

Lawrence Livermore National Laboratory LLNL-POST-636781

Conclusions

= The new Load Balancing algorithm is scalable,
with complexity ®(log(N)).

= Demonstrated good scalability up to 2 Million
MPI processes on Sequoia.

= Cannot know information about every other
processor, because that is not scalable.

Lawrence Livermore National Laboratory — Lpost s

Acknowledgements

= Using Sequoia (Livermore Computing)
« Scott Futral
« Dave Fox

= Mercury Development Team
« Patrick Brantley
- Shawn Dawson
« Scott McKinley
- Dave Stevens

= Management Support
« Brian Pudliner
« Chris Clouse
« Frank Graziani
 Jim Rathkopf
« Kim Cupps

Lawrence Livermore National Laboratory LINLPOST-35781

