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 When a Monte Carlo particle transport code is 
parallelized via domain replication, the geometry 
is redundantly stored on all of the processors 
and the particles are distributed.
 If all of the processors start with exactly the 

same number of particles, after one cycle of 
advancing the particles each processor may end 
up with a different number of particles.
 This dispersion of particle counts across 

processors causes load imbalance.
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 Particles must be redistributed across 
processors to minimize the most worked 
processor.
 Let w0, w1, …, wN-1 be the workload (particle 

count) on each of N processors.

 Load Balance Efficiency ௔௩௘ሺ௪೔ሻ
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 We describe an efficient algorithm for 
communicating particles so that the particle 
count is balanced across processors.
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 Description of Mercury Monte Carlo Code
 Definition of Scalability
 Load balancing particle workload across 

processors
 Results Combinatorial 

Geometry 
Surfaces.
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 Solves dynamic neutron and gamma transport problems
 Solves eigenvalue criticality problems
 Also has charged particle transport capability
 Written in C++, python user interface, massively parallel, 

distributed memory MPI and shared memory OpenMP
 Parallelized via domain decomposition and domain 

replication
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 Scalability: The ability to perform well as the 
number of processors, N, increases.
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Non-Scalable Example: Run 
time is proportional to the 
number of processors.
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Scalable Example: Run time 
is proportional to the logarithm
of the number of processors.
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Weak Scaling: constant work per processor, ie. problem size increases 
as the processor count increase.  It examines parallel overhead.
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Date Computer Number of Processors
1998 Blue 5,856
2001 White 8,192
2005 Purple 12,544
2004 BlueGene/L 65,636
2009 Dawn 147,456
2012 Sequoia 1,572,864
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 Our old load balancing algorithm gathered a 
global view of the amount of work each 
processor had, and then made global decisions 
about how to communicate particles to achieve 
load balance.
• Not scalable since it needs to know about every

processor.

 Our new load balancing algorithm does iterative 
pairwise balancing step, in a clever way, such 
that after (log(n)) iterations, the particle 
workload is balanced across all processors.
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BalanceWithPartnerWrapper()
{

int NumRounds = ceiling(log2(numProcessors));
for ( int k = 0; k < NumRounds; k++ )
{

BalanceWithPartner(k);
}

}
BalanceWithPartner(int binaryDigit)
{

// rank is this processor’s MPI rank
// all binary digits agree except binaryDigit is flipped in partner
int partner = rank ^ (1 << binaryDigit);
// Send and Recv with partner processor the number of particles each has
int aveNumParticles = ( myNumParticles + partnerNumParticles ) / 2;
if ( myNumParticles > partnerNumParticles ) // I am sending
{

// send (myNumParticles – aveNumParticles) particles to partner
}
else if ( myNumParticles < partnerNumParticles ) // I am receiving
{

// recv (partnerNumParticles – aveNumParticles) particles from partner
}

}
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We now define how the processors are paired.  Processors are paired based upon their 
processor rank and the current iteration number k of the algorithm.  We choose the 
partner processor on the kth iteration of the algorithm by defining the partner function fk, 
and the rank of the partner processor is given by:  partner = fk(rank), where

௞݂ ݇݊ܽݎ ൌ ቊ݇݊ܽݎ ൅ 2௞					if the	݇௧௛	binary digit of ݇݊ܽݎ	is 0
݇݊ܽݎ െ 2௞					if the	݇௧௛	binary digit of ݇݊ܽݎ	is 1

Another interpretation of fk is to flip the kth binary digit of the input argument.  If an…a0
are the binary digits of the processor rank, then

rank ൌ ܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞ܽ௞ିଵ …ܽଵܽ଴ ൌ෍ܽ௜2୧
௡

௜ୀ଴

			where	a୧ ∈ ሼ0,1ሽ

௞݂ ݇݊ܽݎ ൌ ௞݂ ܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞ܽ௞ିଵ …ܽଵܽ଴ ൌ ܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞ܽ௞ିଵ …ܽଵܽ଴
௞ܽ		݁ݎ݄݁ݓ ൌ 1 െ ܽ௞	

fk has the appealing property that it is self-inverting: fk(fk(rank)) = rank, i.e. fk is an 
involution, so fk-1 = fk .  As a result of this property,

fk(rank) = partner and fk(partner) = rank
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 The partner processor function fk, for k = 0,1,2,3,4.
 Note the functions are symmetric about the identity line (“y=x” line) 

at integer values, which characterizes involutions (self inverse 
functions, ݂ ൌ ݂ିଵ).

 Desired property f(rank) = parter and f(partner) = rank
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BalanceWork(work[0…N-1],  /* Input: Number of particles per processor */
communicator  /* Input: MPI communicator */ ) {

Max_priority_queue maxQueue;
Min_priority_queue minQueue;
ave = (work[0] + work[1] + ... + work[N-1])/N;
for ( int rank = 0; rank < N; rank++ ) {

maxQueue.push(work[rank], rank);
minQueue.push(work[rank], rank);

}
for ( int iteration = 0; iteration < N; iteration++ ) {

(maxWork, maxRank) = maxQueue.pop();
(minWork, minRank) = minQueue.pop();
numParticles = min(ave – minWork, maxWork – ave);
minWork += numParticles;
maxWork -= numParticles;
Processor maxRank sends    numParticles particles to   processor minRank
Processor minRank receives numParticles particles from processor maxRank
maxQueue.push(maxWork, maxRank);
minQueue.push(minWork, minRank);

}
}
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 10,000 particles per processor.

 Run on 20=1, 21=2, 22=4, …, 221=2,097,152 MPI processes of Sequoia.

 Weak scaling: constant work per processor.

 Double the number of processors → double the number of particles.

 Measures parallel overhead and load imbalance.

Godiva: Sphere of Uranium.
• Radius    8.7407cm
• Density 18.74 g/cm3

• The isotopic atom fractions
• U234 = 0.01025002
• U235 = 0.9376829
• U238 = 0.05206708. 

• The test problem identification 
number: HEU-MET-FAST-001.
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 Without load balancing, there is dispersion in the 
number of particles per processor which decreases 
efficiency.

 With load balancing, the efficiency remains over 
95%, even at 2 Million MPI processes.
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We are load balancing with a processor group size of 29=512 processors, so we see 
discontinuous jumps in the run time at 29 and 218 where we have to do an additional 
round of load balancing.
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 The new Load Balancing algorithm is scalable, 
with complexity ( log(N) ).
 Demonstrated good scalability up to 2 Million 

MPI processes on Sequoia.
 Cannot know information about every other 

processor, because that is not scalable.
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 Using Sequoia (Livermore Computing)
• Scott Futral
• Dave Fox

 Mercury Development Team
• Patrick Brantley
• Shawn Dawson
• Scott McKinley
• Dave Stevens

 Management Support
• Brian Pudliner
• Chris Clouse
• Frank Graziani
• Jim Rathkopf
• Kim Cupps


