
LLNL-POST-635781
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

M&C 2013
May 6, 2013

Lawrence Livermore National Laboratory LLNL-POST-635781
2

 When a Monte Carlo particle transport code is
parallelized via domain replication, the geometry
is redundantly stored on all of the processors
and the particles are distributed.
 If all of the processors start with exactly the

same number of particles, after one cycle of
advancing the particles each processor may end
up with a different number of particles.
 This dispersion of particle counts across

processors causes load imbalance.

Lawrence Livermore National Laboratory LLNL-POST-635781
3

 Particles must be redistributed across
processors to minimize the most worked
processor.
 Let w0, w1, …, wN-1 be the workload (particle

count) on each of N processors.

 Load Balance Efficiency ௔௩௘ሺ௪೔ሻ
௠௔௫ሺ௪೔ሻ

భ
ಿ ∑ ௪೔బರ౟ಬొ

୫ୟ୶
బರ౟ಬొ

௪೔

 We describe an efficient algorithm for
communicating particles so that the particle
count is balanced across processors.

Lawrence Livermore National Laboratory LLNL-POST-635781
4

 Description of Mercury Monte Carlo Code
 Definition of Scalability
 Load balancing particle workload across

processors
 Results Combinatorial

Geometry
Surfaces.

Lawrence Livermore National Laboratory LLNL-POST-635781
5

 Solves dynamic neutron and gamma transport problems
 Solves eigenvalue criticality problems
 Also has charged particle transport capability
 Written in C++, python user interface, massively parallel,

distributed memory MPI and shared memory OpenMP
 Parallelized via domain decomposition and domain

replication

Lawrence Livermore National Laboratory LLNL-POST-635781
6

 Scalability: The ability to perform well as the
number of processors, N, increases.

0

20

40

60

80

100

1000 6000

Ti
m

e

Number of Processors

Time vs. Number of
Processors

Non-Scalable Example: Run
time is proportional to the
number of processors.

0

20

40

60

80

100

1000 6000

Ti
m

e

Number of Processors

Time vs. Number of
Processors

Scalable Example: Run time
is proportional to the logarithm
of the number of processors.

ܱ	ݏ݅	݁݉݅ݐ݊ݑݎ	ݏݐ݅	݂݅	݈ܾ݈݁ܽܽܿݏ	ݏ݅	݄݉ݐ݅ݎ݋݈݃ܽ	݊ܣ ܰఌ ߝ	∀		 ൐ 0
Weak Scaling: constant work per processor, ie. problem size increases
as the processor count increase. It examines parallel overhead.

Lawrence Livermore National Laboratory LLNL-POST-635781
7

Date Computer Number of Processors
1998 Blue 5,856
2001 White 8,192
2005 Purple 12,544
2004 BlueGene/L 65,636
2009 Dawn 147,456
2012 Sequoia 1,572,864

Lawrence Livermore National Laboratory LLNL-POST-635781
8

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

Lo
ad

 B
al

an
ce

 E
ffi

ci
en

cy
 [%

]

Iteration

Load Balance Efficiency vs. Iteration

2^1 Procs

2^4 Procs

2^8 Procs

2^12 Procs

2^16 Procs

2^21 Procs

Lawrence Livermore National Laboratory LLNL-POST-635781
9

 Our old load balancing algorithm gathered a
global view of the amount of work each
processor had, and then made global decisions
about how to communicate particles to achieve
load balance.
• Not scalable since it needs to know about every

processor.

 Our new load balancing algorithm does iterative
pairwise balancing step, in a clever way, such
that after (log(n)) iterations, the particle
workload is balanced across all processors.

Lawrence Livermore National Laboratory LLNL-POST-635781
10

BalanceWithPartnerWrapper()
{

int NumRounds = ceiling(log2(numProcessors));
for (int k = 0; k < NumRounds; k++)
{

BalanceWithPartner(k);
}

}
BalanceWithPartner(int binaryDigit)
{

// rank is this processor’s MPI rank
// all binary digits agree except binaryDigit is flipped in partner
int partner = rank ^ (1 << binaryDigit);
// Send and Recv with partner processor the number of particles each has
int aveNumParticles = (myNumParticles + partnerNumParticles) / 2;
if (myNumParticles > partnerNumParticles) // I am sending
{

// send (myNumParticles – aveNumParticles) particles to partner
}
else if (myNumParticles < partnerNumParticles) // I am receiving
{

// recv (partnerNumParticles – aveNumParticles) particles from partner
}

}

Lawrence Livermore National Laboratory LLNL-POST-635781
11

We now define how the processors are paired. Processors are paired based upon their
processor rank and the current iteration number k of the algorithm. We choose the
partner processor on the kth iteration of the algorithm by defining the partner function fk,
and the rank of the partner processor is given by: partner = fk(rank), where

௞݂ ݇݊ܽݎ ൌ ቊ݇݊ܽݎ ൅ 2௞					if the	݇௧௛	binary digit of ݇݊ܽݎ	is 0
݇݊ܽݎ െ 2௞					if the	݇௧௛	binary digit of ݇݊ܽݎ	is 1

Another interpretation of fk is to flip the kth binary digit of the input argument. If an…a0
are the binary digits of the processor rank, then

rank ൌ ܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞ܽ௞ିଵ …ܽଵܽ଴ ൌ෍ܽ௜2୧
௡

௜ୀ଴

			where	a୧ ∈ ሼ0,1ሽ

௞݂ ݇݊ܽݎ ൌ ௞݂ ܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞ܽ௞ିଵ …ܽଵܽ଴ ൌ ܽ௡ܽ௡ିଵ …ܽ௞ାଵܽ௞ܽ௞ିଵ …ܽଵܽ଴
௞ܽ		݁ݎ݄݁ݓ ൌ 1 െ ܽ௞	

fk has the appealing property that it is self-inverting: fk(fk(rank)) = rank, i.e. fk is an
involution, so fk-1 = fk . As a result of this property,

fk(rank) = partner and fk(partner) = rank

Lawrence Livermore National Laboratory LLNL-POST-635781
12

 The partner processor function fk, for k = 0,1,2,3,4.
 Note the functions are symmetric about the identity line (“y=x” line)

at integer values, which characterizes involutions (self inverse
functions, ݂ ൌ ݂ିଵ).

 Desired property f(rank) = parter and f(partner) = rank

Lawrence Livermore National Laboratory LLNL-POST-635781
13

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

W
or

kl
oa

d

Processor Rank

Before Load Balancing

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

W
or

kl
oa

d

Processor Rank

1 Round of Load Balancing

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

W
or

kl
oa

d

Processor Rank

2 Rounds of Load Balancing

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

W
or

kl
oa

d

Processor Rank

3 Rounds of Load Balancing

Lawrence Livermore National Laboratory LLNL-POST-635781
1414

BalanceWork(work[0…N-1], /* Input: Number of particles per processor */
communicator /* Input: MPI communicator */) {

Max_priority_queue maxQueue;
Min_priority_queue minQueue;
ave = (work[0] + work[1] + ... + work[N-1])/N;
for (int rank = 0; rank < N; rank++) {

maxQueue.push(work[rank], rank);
minQueue.push(work[rank], rank);

}
for (int iteration = 0; iteration < N; iteration++) {

(maxWork, maxRank) = maxQueue.pop();
(minWork, minRank) = minQueue.pop();
numParticles = min(ave – minWork, maxWork – ave);
minWork += numParticles;
maxWork -= numParticles;
Processor maxRank sends numParticles particles to processor minRank
Processor minRank receives numParticles particles from processor maxRank
maxQueue.push(maxWork, maxRank);
minQueue.push(minWork, minRank);

}
}

Lawrence Livermore National Laboratory LLNL-POST-635781
15

 10,000 particles per processor.

 Run on 20=1, 21=2, 22=4, …, 221=2,097,152 MPI processes of Sequoia.

 Weak scaling: constant work per processor.

 Double the number of processors → double the number of particles.

 Measures parallel overhead and load imbalance.

Godiva: Sphere of Uranium.
• Radius 8.7407cm
• Density 18.74 g/cm3

• The isotopic atom fractions
• U234 = 0.01025002
• U235 = 0.9376829
• U238 = 0.05206708.

• The test problem identification
number: HEU-MET-FAST-001.

Lawrence Livermore National Laboratory LLNL-POST-635781
16

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0 5 10 15 20

A
ve

ra
ge

 E
ffi

ci
en

cy
 [%

]

Log2(Num_Processors)

Average Efficiency vs. Log2(Num_Processors)

Not Load
Balanced

Load Balanced

 Without load balancing, there is dispersion in the
number of particles per processor which decreases
efficiency.

 With load balancing, the efficiency remains over
95%, even at 2 Million MPI processes.

Lawrence Livermore National Laboratory LLNL-POST-635781
17

0.00E+00

5.00E+01

1.00E+02

1.50E+02

2.00E+02

2.50E+02

3.00E+02

3.50E+02

6 8 10 12 14 16 18 20

Tr
ac

ki
ng

 T
im

e
[S

ec
on

ds
]

Log2(Num_Processors)

Tracking Time vs. Log2(Num_Processors)

Not Load Balanced

Load Balanced

Lawrence Livermore National Laboratory LLNL-POST-635781
18

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

0 5 10 15 20

W
al

l T
im

e
[S

ec
on

ds
]

Log2(Num_Processors)

Load Balancing Time vs. Log2(Num_Processors)

We are load balancing with a processor group size of 29=512 processors, so we see
discontinuous jumps in the run time at 29 and 218 where we have to do an additional
round of load balancing.

Lawrence Livermore National Laboratory LLNL-POST-635781
19

 The new Load Balancing algorithm is scalable,
with complexity (log(N)).
 Demonstrated good scalability up to 2 Million

MPI processes on Sequoia.
 Cannot know information about every other

processor, because that is not scalable.

Lawrence Livermore National Laboratory LLNL-POST-635781
20

 Using Sequoia (Livermore Computing)
• Scott Futral
• Dave Fox

 Mercury Development Team
• Patrick Brantley
• Shawn Dawson
• Scott McKinley
• Dave Stevens

 Management Support
• Brian Pudliner
• Chris Clouse
• Frank Graziani
• Jim Rathkopf
• Kim Cupps

