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 Description of Mercury Monte Carlo Code
 Definition of Scalability
 Scalable Algorithms:

• Globally resolving particle locations on the correct 
processor

• Load balancing particle workload across processors

 Results
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 Solves dynamic neutron transport problems
 Solves eigenvalue criticality problems
 Also has charged particle transport capability
 Written in C++, python user interface, massively parallel, 

distributed memory MPI and shared memory OpenMP
 Parallelized via domain decomposition and domain 

replication
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 Scalability: The ability to perform well as the 
number of processors, N, increases.
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Non-Scalable Example: Run 
time is proportional to the 
number of processors.
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Scalable Example: Run time 
is proportional to the logarithm
of the number of processors.

	 	 	 	 	 	 	 	 		∀	 0
Weak Scaling: constant work per processor, ie. problem size increases 
as the processor count increase.  It examines parallel overhead.
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Date Computer Number of Processors
1998 Blue 5,856
2001 White 8,192
2005 Purple 12,544
2004 BlueGene/L 65,636
2009 Dawn 147,456
2012 Sequoia 1,572,864
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Particles may be created
anywhere, but must be sent to the 
correct processor.

After particles are communicated 
to the correct processor.
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 The user specifies the geometric particle 
source distribution, so particles are not 
necessarily created within the correct 
domain.

 The “Red” processor samples the 
distribution to create particles over the 
entire problem, and the particles must be 
communicated to the correct domain.

 All processors are in the same situation.
 The problem: perform communication so 

that each particle is on the correct 
processor.
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 “Track” particles to the correct domain.
 Mark the particle as being in the Red domain, then reset the 

trajectory and time to finish so it ends up in the correct 
location.  When finished, reset the trajectory to the original 
value.

 Good idea, re-uses existing tracking.  Works well if particles 
are “close” to the correct domain.

 Does not scale if most particles are “far” from the correct 
domain.  Doesn’t work for non-convex problems.
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 Consider a 1D domain decomposed problem 
where each processor has created particles 
uniformly over the entire problem.
 About half of the particles in the problem must 

“flow” through the “Center Domain”.

NumParticles/4 NumParticles/4

 2D and 3D have the same problem.  About half of 
the particles “flow” through center “line” of domains 
in 2D and center “plane” of domains in 3D.
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 Each processor selects O(log(N)) distant domain 
neighbors.
 Form a permuted hypercube graph over the 

processor ranks.
 Each particle that is not on the correct processor 

is sent to the closest distant neighbor.

(000) (001)

(010) (011)

(100) (101)

(110) (111)  is a random permutation operating 
on processor ranks.

Hypercube = G = (V, E)
V = {0,1,…,N-1} = Processor Ranks
E = {(a,b): a and b differ in exactly

one binary digit}
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 Each particle that is not on the correct processor, is 
sent to the closest neighbor domain.

 After O(log(N)) Communication Hops, Each Particle 
is on the Correct Processor.

1st communication   
hop

2nd communication 
hop

3rd communication 
hop

4th communication 
hop

▀ Current Processor
▀ Face Neighbors
▀ Distant Neighbors
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 Each particle that is not on the correct processor, 
must find the closest neighbor domain, and is 
then sent to that processor. 

 We could linearly search 
through all of the neighbors, 
finding the closest neighbor.

 We have O(log(N)) neighbors 
so the runtime is O(log(N)).

 Optimization: Build a k-d tree 
and search the k-d tree which 
has runtime O( log(log(N)) ).
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 Each level in the tree partitions the x, y or z axis.
 We select the axis whose partition is most 

balanced.  Search in the half-space that the 
particle is in.

 If the other half-space is farther away 
than the closest neighbor in the near 
half space, you don’t have to search 
the far-half space.
• If not, then search the far half-space too.

 We cache the nearest neighbor for 
each domain, so we can find the 
nearest neighbor for subsequent 
particles on the same domain in O(1) 
time.
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 It takes O(log(N)) communication hops for each 
particle to end up on the correct processor.
 It takes O(log(log(N))) to find the closest 

neighbor at each communication hop.
 So the total runtime is O( log(N) log(log(N)) ), 

which is fast!
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 3D Combinatorial Geometry, Domain Decomposed, 
double density Uranium, infinite medium (reflecting 
boundary conditions) criticality test problem.

 Each processor has 1 domain which is a 1cm cube.  
10,000 particles/processor.

 Particles are created uniformly over the entire problem.

1x1x1 2x1x1 2x2x1 2x2x2

Scaling Up (doubling) processor count.
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 Let w0, w1, …, wN-1 be the amount of 
computational work per processor.

 Load Balance Efficiency
∑

 Goal of load balancing: maximize efficiency → 
minimize the maximum amount of work on any 
processor.
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 Our old load balancing algorithm gathered a 
global view of the amount of work each 
processor had, and then made global decisions 
about how to communicate particles to achieve 
load balance.
• Not scalable since it needs to know about every

processor.

 Our new load balancing algorithm does iterative 
pairwise balancing step, in a clever way, such 
that after (log(n)) iterations, the particle 
workload is balanced across all processors.
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 Without load balancing, there is dispersion in the 
number of particles per processor which decreases 
efficiency.

 With load balancing, the efficiency remains over 
95%, even at 2 Million MPI processes.
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 Our major parallel algorithms were rewritten to 
be scalable.
• Cannot know information about every other processor, 

because that is not scalable.

 The new “Global Particle Find” algorithm is 
scalable, with complexity O( log(N) log(log(N)) ).
 The new Load Balancing algorithm is scalable, 

with complexity ( log(N) ).
 Demonstrated good scalability up to 2 Million 

MPI processors on Sequoia.
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 Using Sequoia (Livermore Computing)
• Scott Futral
• Dave Fox

 Mercury Development Team
• Shawn Dawson
• Scott McKinley
• Dave Stevens

 Management Support
• Brian Pudliner
• Chris Clouse
• Frank Graziani
• Jim Rathkopf
• Kim Cupps


