
LLNL-PRES-609801
This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

2013 Joint Mathematics Meetings
January 11, 2013

Lawrence Livermore National Laboratory LLNL-PRES-609801
2

 Description of Mercury Monte Carlo Code
 Definition of Scalability
 Scalable Algorithms:

• Globally resolving particle locations on the correct
processor

• Load balancing particle workload across processors

 Results

Lawrence Livermore National Laboratory LLNL-PRES-609801
3

 Solves dynamic neutron transport problems
 Solves eigenvalue criticality problems
 Also has charged particle transport capability
 Written in C++, python user interface, massively parallel,

distributed memory MPI and shared memory OpenMP
 Parallelized via domain decomposition and domain

replication

Lawrence Livermore National Laboratory LLNL-PRES-609801
4

 Scalability: The ability to perform well as the
number of processors, N, increases.

0

20

40

60

80

100

1000 6000

Ti
m

e

Number of Processors

Time vs. Number of
Processors

Non-Scalable Example: Run
time is proportional to the
number of processors.

0

20

40

60

80

100

1000 6000

Ti
m

e

Number of Processors

Time vs. Number of
Processors

Scalable Example: Run time
is proportional to the logarithm
of the number of processors.

	 	 	 	 	 	 	 	 		∀	 0
Weak Scaling: constant work per processor, ie. problem size increases
as the processor count increase. It examines parallel overhead.

Lawrence Livermore National Laboratory LLNL-PRES-609801
5

Date Computer Number of Processors
1998 Blue 5,856
2001 White 8,192
2005 Purple 12,544
2004 BlueGene/L 65,636
2009 Dawn 147,456
2012 Sequoia 1,572,864

Lawrence Livermore National Laboratory LLNL-PRES-609801
6

Particles may be created
anywhere, but must be sent to the
correct processor.

After particles are communicated
to the correct processor.

Lawrence Livermore National Laboratory LLNL-PRES-609801
7

 The user specifies the geometric particle
source distribution, so particles are not
necessarily created within the correct
domain.

 The “Red” processor samples the
distribution to create particles over the
entire problem, and the particles must be
communicated to the correct domain.

 All processors are in the same situation.
 The problem: perform communication so

that each particle is on the correct
processor.

Lawrence Livermore National Laboratory LLNL-PRES-609801
8

 “Track” particles to the correct domain.
 Mark the particle as being in the Red domain, then reset the

trajectory and time to finish so it ends up in the correct
location. When finished, reset the trajectory to the original
value.

 Good idea, re-uses existing tracking. Works well if particles
are “close” to the correct domain.

 Does not scale if most particles are “far” from the correct
domain. Doesn’t work for non-convex problems.

Lawrence Livermore National Laboratory LLNL-PRES-609801
9

 Consider a 1D domain decomposed problem
where each processor has created particles
uniformly over the entire problem.
 About half of the particles in the problem must

“flow” through the “Center Domain”.

NumParticles/4 NumParticles/4

 2D and 3D have the same problem. About half of
the particles “flow” through center “line” of domains
in 2D and center “plane” of domains in 3D.

Lawrence Livermore National Laboratory LLNL-PRES-609801
10

 Each processor selects O(log(N)) distant domain
neighbors.
 Form a permuted hypercube graph over the

processor ranks.
 Each particle that is not on the correct processor

is sent to the closest distant neighbor.

(000) (001)

(010) (011)

(100) (101)

(110) (111) is a random permutation operating
on processor ranks.

Hypercube = G = (V, E)
V = {0,1,…,N-1} = Processor Ranks
E = {(a,b): a and b differ in exactly

one binary digit}

Lawrence Livermore National Laboratory LLNL-PRES-609801
11

000 001

010 011

100 101

110 111

Lawrence Livermore National Laboratory LLNL-PRES-609801
12

 Each particle that is not on the correct processor, is
sent to the closest neighbor domain.

 After O(log(N)) Communication Hops, Each Particle
is on the Correct Processor.

1st communication
hop

2nd communication
hop

3rd communication
hop

4th communication
hop

▀ Current Processor
▀ Face Neighbors
▀ Distant Neighbors

Lawrence Livermore National Laboratory LLNL-PRES-609801
13

1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

0 2 4 6 8 10 12 14 16 18 20

Fr
ac

tio
n

of
 P

ar
tic

le
s

Number of Communication Hops

Distribution of the Number of Communication Hops

Num Procs = 2^0

Num Procs = 2^1

Num Procs = 2^2

Num Procs = 2^3

Num Procs = 2^4

Num Procs = 2^5

Num Procs = 2^6

Num Procs = 2^7

Num Procs = 2^8

Num Procs = 2^9

Num Procs = 2^10

Num Procs = 2^11

Num Procs = 2^12

Num Procs = 2^13

Num Procs = 2^14

Num Procs = 2^15

Lawrence Livermore National Laboratory LLNL-PRES-609801
14

0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14

M
ax

im
um

 N
um

be
r o

f C
om

m
un

ic
at

io
n

H
op

s

Log2(Num_Processors)

Maximum Number of Communication Hops vs.
Log2(Num_Processors)

Lawrence Livermore National Laboratory LLNL-PRES-609801
15

 Each particle that is not on the correct processor,
must find the closest neighbor domain, and is
then sent to that processor.

 We could linearly search
through all of the neighbors,
finding the closest neighbor.

 We have O(log(N)) neighbors
so the runtime is O(log(N)).

 Optimization: Build a k-d tree
and search the k-d tree which
has runtime O(log(log(N))).

Lawrence Livermore National Laboratory LLNL-PRES-609801
16

 Each level in the tree partitions the x, y or z axis.
 We select the axis whose partition is most

balanced. Search in the half-space that the
particle is in.

 If the other half-space is farther away
than the closest neighbor in the near
half space, you don’t have to search
the far-half space.
• If not, then search the far half-space too.

 We cache the nearest neighbor for
each domain, so we can find the
nearest neighbor for subsequent
particles on the same domain in O(1)
time.

Lawrence Livermore National Laboratory LLNL-PRES-609801
17

 It takes O(log(N)) communication hops for each
particle to end up on the correct processor.
 It takes O(log(log(N))) to find the closest

neighbor at each communication hop.
 So the total runtime is O(log(N) log(log(N))),

which is fast!

Lawrence Livermore National Laboratory LLNL-PRES-609801
18

 3D Combinatorial Geometry, Domain Decomposed,
double density Uranium, infinite medium (reflecting
boundary conditions) criticality test problem.

 Each processor has 1 domain which is a 1cm cube.
10,000 particles/processor.

 Particles are created uniformly over the entire problem.

1x1x1 2x1x1 2x2x1 2x2x2

Scaling Up (doubling) processor count.

Lawrence Livermore National Laboratory LLNL-PRES-609801
19

0.00E+00

2.00E+00

4.00E+00

6.00E+00

8.00E+00

1.00E+01

1.20E+01

6 7 8 9 10 11 12 13 14 15

W
al

l T
im

e
[S

ec
on

ds
]

Log2(Num_Processors)

Tracking Time (Including Global Particle Find) vs.
Log2(Num_Processors)

Lawrence Livermore National Laboratory LLNL-PRES-609801
20

 Let w0, w1, …, wN-1 be the amount of
computational work per processor.

 Load Balance Efficiency
∑

 Goal of load balancing: maximize efficiency →
minimize the maximum amount of work on any
processor.

Lawrence Livermore National Laboratory LLNL-PRES-609801
21

 Our old load balancing algorithm gathered a
global view of the amount of work each
processor had, and then made global decisions
about how to communicate particles to achieve
load balance.
• Not scalable since it needs to know about every

processor.

 Our new load balancing algorithm does iterative
pairwise balancing step, in a clever way, such
that after (log(n)) iterations, the particle
workload is balanced across all processors.

Lawrence Livermore National Laboratory LLNL-PRES-609801
22

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

W
or

kl
oa

d

Processor Rank

Before Load Balancing

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

W
or

kl
oa

d

Processor Rank

1 Round of Load Balancing

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

W
or

kl
oa

d

Processor Rank

2 Rounds of Load Balancing

0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7

W
or

kl
oa

d

Processor Rank

3 Rounds of Load Balancing

Lawrence Livermore National Laboratory LLNL-PRES-609801
23

50.00%

55.00%

60.00%

65.00%

70.00%

75.00%

80.00%

85.00%

90.00%

95.00%

100.00%

0 5 10 15 20

A
ve

ra
ge

 E
ffi

ci
en

cy
 [%

]

Log2(Num_Processors)

Average Efficiency vs. Log2(Num_Processors)

Not Load
Balanced

Load Balanced

 Without load balancing, there is dispersion in the
number of particles per processor which decreases
efficiency.

 With load balancing, the efficiency remains over
95%, even at 2 Million MPI processes.

Lawrence Livermore National Laboratory LLNL-PRES-609801
24

 Our major parallel algorithms were rewritten to
be scalable.
• Cannot know information about every other processor,

because that is not scalable.

 The new “Global Particle Find” algorithm is
scalable, with complexity O(log(N) log(log(N))).
 The new Load Balancing algorithm is scalable,

with complexity (log(N)).
 Demonstrated good scalability up to 2 Million

MPI processors on Sequoia.

Lawrence Livermore National Laboratory LLNL-PRES-609801
25

 Using Sequoia (Livermore Computing)
• Scott Futral
• Dave Fox

 Mercury Development Team
• Shawn Dawson
• Scott McKinley
• Dave Stevens

 Management Support
• Brian Pudliner
• Chris Clouse
• Frank Graziani
• Jim Rathkopf
• Kim Cupps

