Lawrence Livermore National Laboratory



LCLS undulator magnets create intense x-ray laser light by jostling a pulse of electrons traveling near the speed of light.

Livermore researchers have been among the first to use the Linac Coherent Light Source (LCLS), which produces ultrashort x-ray pulses more than a billion times brighter than ever produced on Earth. Located at the Department of Energy's SLAC National Accelerator Laboratory in Menlo Park, California, LCLS is designed to enable scientists to take stop-action pictures of atoms and molecules in motion, shedding light on the fundamental processes of chemistry, physics, materials science, electronics, medicine, and life itself.


The LCLS project is a collaboration of SLAC; Lawrence Livermore, Argonne, Brookhaven, and Los Alamos national laboratories; and the University of California (UC) at Los Angeles. Livermore experts designed and fabricated the optics that transport the x-ray beam to chambers in two experimental halls. These mirrors help control the size and direction of the x-ray beam. Additional detectors fabricated by Livermore help diagnose x-ray beam properties such as intensity.

Groundbreaking for the $420 million facility took place in October 2006. At the dedication ceremony August 16, 2009, SLAC Director Persis Drell said, "For some disciplines, this tool will be as important to the future as the microscope has been to the past." Livermore scientists helped to characterize and troubleshoot the x-ray pulses in preparation for initial experiments in October 2009. They also led or contributed to several international collaborations that conducted some of the first scientific experiments on LCLS.

See Science and Technology Review article, "Groundbreaking Science with the World's Brightest X Rays." More about the Linac Coherent Light Source.]