Arbitrary Lagrangian-Eulerian 3D and 2D Multi-Physics Code
ALE3D is a 2D and 3D multi-physics numerical simulation software tool using arbitrary Lagrangian-Eulerian (ALE) techniques. The code is written to address both two-dimensional (2D) and three-dimensional (3D) problems using a hybrid finite element and finite volume formulation to model fluid and elastic-plastic response on an unstructured grid.
The ALE and mesh relaxation capability broadens the scope of applications in comparison to tools restricted to Lagrangian or
Eulerian (advection) only approaches, while maintaining accuracy and efficiency for large, multi-physics and complex geometry simulations. Beyond its foundation as a hydrodynamics and structures code, ALE3D has multi-physics capabilities that integrate various packages through an operator-splitting approach.
Additional ALE3D features include heat conduction, chemical kinetics and species diffusion, incompressible flow, wide range of material models, chemistry models, multi-phase flow, and magneto-hydrodynamics for long (implicit) to short (explicit) time-scale applications.

ALE3D4I (ALE3D For Industry) is a new version of ALE3D that allows industry and academic users to access the high-performance / high-fidelity computing capabilities of ALE3D. ALE3D4I features most of the same features and capabilities as ALE3D and is available on LLNL's massively parallel supercomputers. more >>
Upcoming Lawrence Livermore National Laboratory ALE3D class offerings:
ALE3D INTRODUCTORY CLASS via MS Teams – Sep. 12 thru Sep. 16, 2022 – (Registration open, cost $1200)
This introductory class covers the basics of running the code and describe some of the theory behind its various physics modules. There is a mix of lecture and hands-on training during the five days. The target audience are those who have performed some computational modeling. Some experience running ALE3D is helpful, but not required. Users must have a valid, current license. LLNL employees must have a valid LC account and group ale3d_au.
Registration website - https://llnl.cventevents.com/ALE3DIntroSept2022
ALE3D ADVANCED CLASS via MS Teams – Fall 2022 – (Registration not yet open)
This is an advanced class in the use of ALE3D. While many of the topics presented here are presented in the introductory course, this class will cover these topics in much greater detail. The target audience are those who are users of ALE3D, and previous attendance of the introductory ALE3D course is highly encouraged. Users who are licensed and on the waitlist will be given priority once registration opens. If you wish to be put on the waitlist, please email ale3d-help [at] llnl.gov. Registration will be on a per-submodule basis so attendees can sign up for one or all of the submodules at the time of registration. For a draft agenda with more in-depth information on each submodule – click here.
- Submodule 1 – 2022 - $TBD
- Meshing
- Submodule 2 – 2022 - $TBD
- Advection
- Submodule 3 – 2022 - $TBD
- Embedded Grids, Spheral, Advanced Material Models, MIDAS
- Submodule 4 – 2022 - $TBD
- Implicit Mechanics, Heat Transfer, Chemistry
- Submodule 6 – 2022 - $TBD
- Advanced Chemistry
CLASS INFORMATION
Classes are held at Lawrence Livermore National Laboratory (Livermore, CA) unless otherwise stated.
ALE3D is a limited access code. No foreign nationals please.
Contact us at ale3d-help [at] llnl.gov to find out if you are qualified to attend and to be sent an invite as soon as the registration website opens.
Applications and Capabilities
Click on the image for a more complete description of the application or capability

Detonation, Deflagration, Convective Burn—ALE3D can model the detonation, deflagration, and convective burn processes associated with the energetic response to thermal and mechanical stimuli of both high explosives and propellants.
Rocket Motor Impact
NATO fragment impacting HPP rocket motor at 1.0 and 2.6 km/s. The PERMS (propellant energetic response to mechanical stimuli) model is used to predict the impact response of the propellant to the NATO fragment.

Convective Burning
Modeling the convective burning of PBX-9501 as part of the HYDRA thermal explosion imaging experiments. Multi-velocity model coupled with chemistry enables simulations of the evolving deflagration of thermally-degraded material.


Explicit Hydrodynamics—Enforces conservation of momentum using the Finite-Element Method. Problemscan be solved in ALE3D using the Lagrange+Remap approach. Such formulation allows the user the option to run in a variety of modes from Fully Lagrangian to Fully Eulerian.
Explicit Hydrodynamics
Contours of temperature field using ALE3D explicit hydrodynamics simulating a polymer-bonded explosive (PBX) explosion in a confined space. Ritchmeyer-Meshkov instabilities are captured at the shock interface due to density gradient.


Fracture and Fragmentation—The Arbitrary Lagrangian-Eulerian capabilities in ALE3D provide a robust solution for high velocity impact problems while other parts of the simulation can be kept Lagrangian to provide an accurate representation of surfaces and material deformation.
Fracture and Fragmentation
In this simulation, a scored steel plate sitting against a copper buffer is impacted by a copper flyer backed by polycarbonate. The impulse launches the steel plate from the buffer, and the resulting biaxial stretching causes the plate to fracture. The fracture occurs preferentially along the score lines.


Heat Transfer —ALE3D is involved in process modeling for the aluminum manufacturing industry. This picture shows a simulation of several passes of a hot aluminum slab through cooled steel rollers. The plotted temperature contours show heat transfer from the slab to the rollers, which can be important to stress relaxation rates within the aluminum. The simulation also utilizes ALE3D's capabilities for slide surfaces with friction and thermal contact resistance, in addition to employing sophisticated damage evolution material models.
One of the principal forming processes for aluminum is the hot rolling of ingots into thick slabs and further rolling to form plate and sheet material of various thicknesses. Multiple passes in a reversing rolling mill of a hot slab are required to produce semi-finished aluminum plate. However, the large deformations encountered while rolling may lead to failure modes that result in loss of part or even the entire slab. The formation of defects within the plate, such as edge cracking, delamination, alligatoring (center splitting near the front and rear), and the formation of undesirable rolled end shapes, all lead to product losses.
Processing parameters could be chosen that improve product yield if the slab material response to the hot rolling process were sufficiently well understood. We have worked with a major aluminum manufacturer to develop models that:
- Predict temperature, stress, strain, and damage evolution of slab material as it evolves through multipass rolling
- Determine the effect of initial slab shape and rolling pass schedule on fracture and internal product integrity
- Demonstrate the utility of a numerical model as a forming process optimization tool
Heat Transfer
This movie shows the result of several passes of a hot aluminum slab through cooled steel rollers. The plotted temperature contours show heat transfer from the slab to the rollers, which can be important to stress relaxation rates within the aluminum. The simulation also utilizes ALE3D's capabilities for slide surfaces with friction and thermal contact resistance, in addition to employing sophisticated damage evolution material models.


Implicit Hydrodynamics—Twin domain formation during large strain compression of an idealized magnesium polycrystal.
Twin domain formation during large strain compression of an idealized magnesium polycrystal.

Shear localization during channel die compression of an aluminum alloy, with the material response informed by a polycrystal plasticity model.


Incompressible Flow—The incflow model solves the incompressible Navier-Stokes equations using the finite-element method. It uses an implicit projection time-stepping scheme. It is appropriate for long time scale, low Mach number flow problems dictated by viscous effects. The model can be coupled to the heat transfer package for the computation of thermal convection problems.
The incflow model solves the incompressible Navier-Stokes equations using the finite-element method. It uses an implicit projection time-stepping scheme. It is appropriate for long time scale, low Mach number flow problems dictated by viscous effects. The model can be coupled to the heat transfer package for the computation of thermal convection problems.


Lagrangian Particulate Model—The particulate package tracks individual discrete particles through the computational domain. This model is useful for very dilute multi-phase flow problems.
The particulate package tracks individual discrete particles through the computational domain. This model is useful for very dilute multi-phase flow problems.


Magneto-Hydrodynamics (MHD)—The MHD module solves the transient magnetic advection-diffusion equation, magnetic forces are coupled to hydrodynamics and Joule heating is coupled to heat transfer.
A simulation of a physical experiment uses large magnetic fields to compress a thin wall aluminum tube. The geometry consists of a robust steel outer tube and a 0.030-in. inner aluminum tube; the tubes are connected together at one end and connected to a header at the other end. In the physical experiment this device is connected, via 12 cables, to three 10-kV capacitor banks which are discharged simultaneously. In the ALE3D simulation, the capacitor bank and associated cables are modeled by an RLC circuit which is coupled to the Magneto Hydrodynamics (MHD) partial differential equations (PDEs). A large magnetic field exists in the space between the tubes, resulting in a large 'magnetic pressure' that will compress the inner tube.
The simulation exercises the coupling of magnetic fields with explicit hydrodynamics. The thin aluminum tube is constrained to be Lagrangian, but in the air region mesh relaxation is allowed. Since the temperature rise is small, heat transfer is ignored. In the physical experiment both strain gauges and photonic doppler velocimeters were used to measure the deformation, and ALE3D results correlated quite well with this data.

Multiphase Model—The multiphase model allows the computation of flows involving multiple dispersed materials (or phases) where each phase is treated as a continuum. It uses a cell-centered Godunov-type finite-volume scheme. Each phase possesses its own distinct velocity and state data.


Powder Compaction Calculations with ALE 3D—Plastic strain contours and velocity vectors for aluminum powder compaction inside a rigid box.
Powder compaction calculations with ALE 3D (plastic strain contours and velocity vectors for Aluminum powder compaction inside a rigid box).


Structural—The ALE (Arbitrary Lagrangian-Eulerian) framework allows for a fully-coupled fluid-structure interaction approach when modeling such complex behavior as a high explosive detonated in contact with a reinforced concrete column. Structural elements, such as beams and shells, have also been implemented for structural applications.
The ALE (Arbitrary Lagrangian-Eulerian) framework allows for a fully-coupled fluid-structure interaction approach when modeling such complex behavior as a high explosive detonated in contact with a reinforced concrete column. Structural elements, such as beams and shells, have also been implemented for structural applications.
This is an example of a fully-coupled fluid-structure interaction blast effects simulation. This simulation shows a small high explosive charge detonated in contact with a reinforced concrete column. The orange material is the high-explosive products. Completely damaged concrete is shown in red and undamaged concrete is shown in blue.


Void Collapse in Solids—Temperature field generated from void collapse in a solid material.
Temperature field generated from void collapse in a solid material. The ALE3D Explicit Hydro simulations capture formation of primary jet and secondary shock propagation.

ALE3D Papers and Presentations
Author | Paper/Article | Date | Publication No. | Presented/Published |
---|---|---|---|---|
Austin, R.A., Barton, N.R., Reaugh, J.E., and Fried, L.E. | Direct numerical simulation of shear localization and decomposition reactions in shock-loaded HMX crystal | 2015 May 14 |
Journal of Applied Physics, Vol. 117, No. 18, 185902 (2015) | |
Boley, C.D., Khairallah, S.A., and Rubenchik, A.M. | Calculation of laser absorption by metal powders in additive manufacturing | 2015 Mar |
Applied Optics, Vol. 54, Iss. 9, pp. 2477-2482 (2015) | |
Barton, N.R., Bernier, J.V., Lebebsohn, R.A., Boyce, D.E. | The use of discrete harmonics in direct multi-scale embedding of polycrystal plasticity | 2015 Jan 1 |
Computer Methods in Applied Mechanics and Engineering, Vol. 283, pp. 224-242 | |
King, W., Anderson, A.T., Ferencz, R.M., Hodge, N.E., Kamath, C., and Khairallah, S.A., | Overview of modelling and simulation of metal powder–bed fusion process at Lawrence Livermore National Laboratory | 2014 Dec |
Materials Science and Technology (2014) | |
Khairallah, S.A., and Anderson, A. | Mesoscopic simulation model of selective laser melting of stainless steel powder | 2014 Nov |
Journal of Materials Processing Technology, Vol. 214, Issue 11, pp. 2627-2636 |
|
Puso, M.A., Kokko, E., Settgast, R., Sanders, J., Simpkins, B., and Liu, B. | An embedded mesh method using piecewise constant multipliers with stabilization: mathematical and numerical aspects | 2014 Oct 22 |
International Journal for Numerical Methods in Engineering (Online Early View: to be published) | |
Barton, N.R., Rhee, M., Li, S.F., Bernier, J.V., Kumar, M., Lind, J.F., Bingert, J.F. | Using high energy diffraction microscopy to assess a model for microstructural sensitivity in spall response | 2014 | Journal of Physics: Conference Series, Vol. 500, Part 11, 112007 | |
Austin, R.A., Barton, N.R., Howard, W.M., and Fried, L.E. | Modeling pore collapse and chemical reactions in shock-loaded HMX crystals | 2014 | Journal of Physics: Conference Series, Vol. 500, Part 5, 05202 | |
McClelland, M.A., Glascoe, E.A., Nichols, A.L., Schofield, S.P., Springer, H.K. | ALE3D Simulation of Incompressible Flow, Heat Transfer, and Chemical Decomposition of Comp B in Slow Cookoff Experiments | 2014 Jun 23 |
LLNL-CONF-656112 | International Detonation Symposium, San Francisco, CA, United States July 13-18, 2014 |
Barton, N.R., Rhee, M., | A multiscale strength model for tantalum over an extended range of strain rates | 2013 Sept |
J. Appl. Phys., Vol. 114, No. 12, 123507 (2013) | |
Tringe, J.W., Kercher, J.R., Springer, H.K., Glascoe, E.A., Levie, H.W., Hsu, P., Willey, T. M. and Molitoris, J. D. | Numerical and experimental study of thermal explosions in LX-10 and PBX 9501: influence of thermal damage on deflagration processes | 2013 July |
J. Appl. Phys., Vol. 114, 043504 (2013) | |
Rhee, M., Bernier, J.V., Li, S.F., Bingert, J., Lind, J., and Barton, N.R., | Model Validation for Microstructural Sensitivities Using High Energy Diffraction Microscopy | 2013 July |
TMS ICME, 2nd World Congress on Integrated Computational Materials Engineering, 2013 | |
Banks, J.W., Henshaw, W.D., and Sjogreen, B. | A stable FSI algorithm for light rigid bodies in compressible flow | 2013 July 15 |
Journal of Computational Physics, Vol. 245, pp. 399–430 (2013) | |
Reaugh, J.E., Curtis, J.P., Maheswaran, M.A. | Computer simulations to study the effects of explosive and confinement properties on the deflagration-to-detonation transition (DDT) | 2013 July |
LLNL-PROC-639618 | Proceedings of the American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter, Seattle, WA, July 7-12, 2013 |
White, B.W., Springer, H.K., and Reaugh J.E. | Computational studies of the skid test: Evaluation of the non-shock ignition of LX-10 using HERMES | 2013 July |
Proceedings of the American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter, Seattle, WA, July 7-12, 2013 Journal of Physics: Conference Series 500, (2014) 192021 |
|
Springer, H.K., Tarver C.M., Reaugh J.E., and May, C.M. | Investigating short-pulse shock initiation in HMX-based explosives with reactive meso-scale simulations | 2013 July |
Proceedings of the American Physical Society Topical Group Meeting on Shock Compression of Condensed Matter, Seattle, WA, July 7-12, 2013 Journal of Physics: Conference Series 500, (2014) 052041 |
|
Reaugh, J.E., | HERMES Model Modifications and Applications 2012 | 2013 Apr 17 |
LLNL-TR-635400 | |
Barton, N.R., Arsenlis, A., Marian, J., | A polycrystal plasticity model of strain localization in irradiated iron | 2013 Feb |
Journal of the Mechanics and Physics of Solids, Vol. 61, No. 2, pp. 341–351 (2013) | |
Banks, J.W. and Sjogreen, B. | Stability of Finite Difference Discretizations of Multi-Physics Interface Conditions | 2013 | Commun. Comput. Phys., Vol. 13, No. 2, pp. 386-410 (2013) | |
Puso, M.A., Sanders, J., Settgast, R., Liu, B. | An embedded mesh method in a multiple material ALE | 2012 Feb 28 |
LLNL-JRNL-533451 | Computer Methods in Applied Mechanics and Engineering Vol. 245–246, pp. 273–289 (Oct. 2012) |
Barton, N.R., Bernier, J.V., Knap, J., Sunwoo, A.J., Cerreta, E., Turner, T.J. | A call to arms for task parallelism in multi-scale materials modeling | 2011 May |
International Journal for Numerical Methods in Engineering, Vol. 86, No. 6, pp. 744–764 | |
Barton, N.R., Bernier, J.V., Edmiston, J.K. | Bringing Together Computational and Experimental Capabilities at the Crystal Scale | 2009 Jul 29 |
LLNL-CONF-415155 | Shock Compression of Condensed Matter 2009, Nashville, TN, United States June 28-July 3, 2009 |
Moss, W.C., King, M.J., Blackman, E.G. | Skull Flexure from Blast Waves: A Mechanism for Brain Injury with Implications for Helmet Design | 2009 May 1 |
LLNL-JRNL-412717 | Physical Review Letters Vol. 103, 108702 |
Barton, N.R., Winter, N.W., Reaugh, J.E., | Defect evolution and pore collapse in crystalline energetic materials | 2009 Apr |
Modelling and Simulation in Materials Science and Engineering, Vol. 17, No. 3, 035003 | |
Leininger, L., Springer, H.K., Mace, J., Mas, E. | Modeling The Shock Initiation of PBX-9501 in ALE3D | 2008 Jul 8 |
LLNL-CONF-405174 | MABS Conference, Oslo, Norway September 1-5, 2008 |
Leininger, L., Springer, H.K., Mace, J., Mas, E. | Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D | 2008 Jul 8 |
LLNL-CONF-405270 | MABS Conference, Oslo, Norway September 1-5, 2008 |
Najjar, F.M., Solberg, J., White, D. | Verification Test Suite (VERTS) For Rail Gun Applications using ALE3D: 2-D Hydrodynamics & Thermal Cases | 2008 Apr 25 |
LLNL-TR-403164 | NECDC 2008, Livermore CA |
Bernier, J.V., Barton, N.R., Knap, J. | Polycrystal Plasticity Based Predictions of Strain Localization in Metal Forming | 2008 Mar |
J. Eng. Mater. Technol., Vol. 130, No. 2, 021020 (Mar 27, 2008) | |
Barton, N.R., Knap, J., Arsenlis, A., Becker, R., Hornung, R.D., Jefferson, D.R., | Embedded polycrystal plasticity and adaptive sampling | 2008 Feb |
International Journal of Plasticity, Vol. 24, No. 2, Pages 242–266 | |
Howard, W.M., McClelland, M.A., Nichols, A.L. | ALE3D Simulations of Gap Closure and Surface Ignition for Cookoff Modeling | 2006 Jun 23 |
UCRL-CONF-222367 | 13th International Detonation Symposium Norfolk, VA July 23 - 28, 2006 |
McClelland, M. A., Maienschein, J. L., Howard, W. M., deHaven, M. R. | ALE3D Simulation and Measurement of Violence in a Fast Cookoff Experiment for LX-10 | 2006 May 25 |
UCRL-CONF-221624 | JANNAF APS-CS-PSHS-Joint Meeting San Diego, CA December 4 - 8, 2006 |
Riordan, T.E. | ALE3D Rolling Simulations | 2006 Aug 3 |
UCRL-TR-223365 | |
J. Knap, J., McClelland, M. A., Maienschein, J. L., Howard, W. M., Nichols, A. L., deHaven, M. R., Strand, O. T. | Measurement and ALE3D Simulation of Violence in a Deflagration Experiment With LX-10 and Aermet-100 Alloy | 2006 Jun 27 |
UCRL-CONF-222438 | 13th International Detonation Symposium Norfolk, VA July 23 - 28, 2006 |
McClelland, M. A., Maienschein, J. L., Howard, W. M., Nichols, A. L., deHaven, M. R., Strand, O. T. | ALE3D Simulation of Heating and Violence in a Fast Cookoff Experiment with LX-10 | 2006 Jun 28 |
UCRL-CONF-222465 | 13th International Detonation Symposium Norfolk, VA July 23 - 28, 2006 |
Wemhoff, A. P., Burnham, A. K. | Comparison of the LLNL ALE3D and AKTS Thermal Safety Computer Codes for Calculating Times to Explosion in ODTX and STEX Thermal Cookoff Experiments | 2006 Apr 19 |
UCRL-TR-220687 | |
Leininger, L.D. | Validation of Air-Backed Underwater Explosion Experiments with ALE3D | 2005 Apr 14 |
UCRL-PRES-214937 | |
McClelland, M. A., Maienschein, J. L., Yoh, J.J., W. M., deHaven, M. R., Strand, O. T. | Measurements and ALE3D Simulations for Violence in a Scaled Thermal Explosion Experiment with LX-10 and AerMet 100 Steel | 2005 Jun 10 |
UCRL-CONF-212828 | Joint Army-Navy-NASA-Air Force 40th Combustion Subcommittee/28th Airbreathing Propulsion Subcommittee/22nd Propulsion Systems Hazards Subcommittee/4th Modeling & Simulation Subcommittee Meeting Charleston, SC June 13 - 17, 2005 |
Nichols, A.L. | Species Diffusion in ALE3D | 2005 Apr 6 |
UCRL-CONF-211116 | NECDC 04 Livermore, CA October 4 - 7, 2004 |
McClelland, M. A., Maienschein, J. L., Reaugh, J.E., Tran, T.D., Nichols, A.L., Wardell, J.F. | ALE3D Model Predictions and Experimental Analysis of the Cookoff Response of Comp B* | 2003 Dec 1 |
UCRL-CONF-201209 | Joint Army Navy NASA Air Force (JANNAF) Meeting Colorado Springs, CO December 1 - 5, 2003 |
Nichols, A.L., Tarver, C.M., McGuire, E.M. | ALE3D Statistical Hot Spot Model Results for LX-17 | 2003 Jul 11 | UCRL-JC-152203 | American Physical Society Topical Conference on Shock Compression of Condensed Matter Portland, OR July 20-25, 2003 |
McClelland, M. A., Maienschein, J. L., Nichols, A.L., Wardell, J.F., Atwood, A.I., Curran, P.O. | ALE3D Model Predications and Materials Characterization for the Cookoff Response of PBXN-109 | 2002 Mar 19 |
UCRL-JC-145756 | Joint Army Navy NASA Air Force 38'h Combustions Subcommittee, 26'h Airbreathing Propulsion Subcommittee, 20th Propulsion Systems Hazards Subcommittee and 2"d Modeling and Simulation Subcommittee Joint Meeting, Destin, FL April 8-12, 2002 |
Ortega, J. | Laminar Validation Cases for the Incompressible Flow Model in ALE3D | 2002 Jul 16 |
UCRL-ID-149328 | |
McClelland, M. A., Tran, Cunningham, B.J., Weese, R.K., Maienschein, J. L. | Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions | 2001 Aug 21 |
UCRL- JC-144009-REV-1 | Insensitive Munitions & Energetic Materials Technology Symposium, Saint-Malo, France June 23 -27, 2003 |
McClelland, M. A., Tran, Cunningham, B.J., Weese, R.K., Maienschein, J. L. | Cookoff Response of PBXN-109: Material Characterization and ALE3D Thermal Predictions | 2000 Mar 1 |
UCRL-JC-144009 | 50th Joint Army-Navy NASA Air Force (JANNAF) Propulsion Meeting, Salt Lake City, Utah July 11-13, 2001 |
Gerassimenko, M. | Test Problems for Reactive Flow HE Model in the ALE3D Code and Limited Sensitivity Study | 2000 Mar 1 |
UCRL-ID-138456 | |
McClelland, M. A., Tran, Cunningham, B.J., Weese, R.K., Maienschein, J. L. | Cookoff Response of PBXN-109: Material Characterization and ALE3D Model | 2000 Oct 24 |
UCRL-JC-138878 | JANNAF CS/APS/PSHS Joint Meeting, Monterey, CA November 13-17, 2000 |
Futral, W.S., Dube, E., Neely, J.R., Pierce, T.G. | Performance of ALE3D on the ASCI Machines |
1999 Feb 8 |
UCRL-JC-132166 | Nuclear Explosives Code Development Conference Las Vegas, Nevada October 25 - 30, 1998 |
Nichols, A.L., McCallen, R.C., Aro, C., Sharp, R., Neely, J.R. | Modeling Thermally Driven Energetic Response of High Explosives in ALE3D | 1998 Oct |
UCRL-JC-133140 | Nuclear Explosives Code Development Conference, Las Vegas, NV Oct 25-30, 1998 |
Dube, E. | Performance of ALE3D on the ASCI machines - Abstract | 1998 | UCRL-JC-132166-ABS | |
Couch, R., Faux, D. | Simulation of Underwater Explosion Benchmark Experiments with ALE3D | 1997 May 19 |
UCRL-JC-123819 | Workshop on Simulation of Underwater Explosion Phenomena, Dunfermline, Scotland May 27-29,1997 |
ALE3D Structure and Performance


What's New in ALE3D

Fracture and Fragmentation Material Model Implementation

Void Seeding and Stress Relaxation during Fragmentation

Chemistry and Coupling to Cheetah Code

Implicit mechanics improvements stregthen ability to model cook-offs

Mesh generation improvements

Initial autocontact is available
ALE3D Contacts
Send e-mail ale3d-help [at] llnl.gov for more information about ALE3D.
ALE3D software is export controlled and official use only restrictions apply, so only requests from U.S. Department of Energy and Department of Defense sites and their contractors can be accepted.
If you are a current ALE3D license holder, there is limited access to ALE3D on our High Performance Computer Center (LC). To get access, you will need to establish a VPN account and be approved by the ALE3D project leader. Download, complete, and submit the following three forms.